РУКОВОДСТВО ПО РАСЧЕТУ СТЕРЖНЕВЫХ ПАЛОВ

РД 31.31.22-81

BAMENT PD3131,55-93
Marceir others ueurousobar
b rareceute eupatoreseo co
Mari epua eo
101.06.932

РАЗРАБОТАН

Государственным проектно-изискательским и научно-исследовательским институтом морского транспорта (Союзморниипроект) - Ленинград жим филиалом "Ленморниипроект"

В.А.ФИРСОВ - главный инженер

С.Н. КУРОЧКИН - руководитель разрасотки,

канд.техн.наук

Исполнители:

н.в.герасименко - по разделу "Евартовные

"палы"

ю.н. шишов – по разделу "Отбойные

"палы"

М. З. РУНОВА - по программе расчета от-

Має пад волен жинйою

Одесским филмалом института "Органергострой"

А. Я. ВАТИС - руководитель разработки

программы расчета швар-

товных палов для ЭВМ

YTBEPAJIEH

Распоряжением Государственного проектно-изыскательского и научно-исследовательского института морского транспорта "Союзморниипроект" № 20 от 26.05.81 г.

Руководство по расчету стержневых палов. РД 31.31.22-81. 11., ЦРИА "Морфлот", 1982, 129 с.

С Центральное рекламно-янформеционное агентство ММФ (ЦРИА "Морфиот"), 1982 г.

РУКОВОДСТВО ПО РАСЧЕТУ СТЕРЖНЕВЫХ ПАЛОВ РД 31.31.22 - 81 Вводится впервые

Распоряжением Союзморниипроекта от 26 мая 1981 гъ № 20 срок введения в действие установлен

с 1 марта 1982 г.

Настоящее Руководство устанавливает требования к расчету стержневых палов, применяемых в составе специализированных причалов для переработки навалочных и наливных грузов.

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Руководство регламентирует расчет стержневых швартовных и отбейных палов и является дополнением к комплексу нормативных документов по расчету причальных сооружений морских портов.
- 1.2. Швартовные палы служат для закрепления швартовов и должны быть жестними конструкциями; отбоиные палы служат для гашения энергим подходящего судна и должны быть гибними конструкциями.
- 1.3. Швартовные палы следует конструировать многосвайными и преимущественно с наклонными опорами, а отбойные односвайными с вертикальными опорами. Допускается применение многосвайных отбойных палов с вертикальными опорами.
- 1.4. Настоящее Руководство предназначено для использования проектными и эксплуатационными организациями ММФ.

2. РЕНОМЕНДАЦИИ ПО НОМПОНОВНЕ ПРИЧАЛЬНЫХ СООРУЖЕНИЙ СО СТЕРЖНЕВЫМИ ПАЛАМИ

- 2.1. Рекомендации по компоновке носят общия характер и составлены в объеме, необходимом для расчета стеряневых палов.
- 2.2. Компоновка причальных сооружений, в составе которых имеются швартовные и отбоиные пала, должна обеспечивать удобное и безопасное причаливание судна, его надежную стоянку во время производства погрузо-разгрузочных работ, пожаробезопасность и выполнение мероприятий по охране окружающей среды.
- 2.3. При компоновке специализированного причального сооружения, предназначенного для переработки навалочных и наливных грузов, рекомендуется в его состав включать грузовую платформу, швартовные и отбойные палы (рис.1). Количество и расположение швартовных и отбойных палов определяется диапазоном размерений обслуживаемых у причала судов и принятой технологией их обработки, и устанавливается при компоновке сооружения в целом.
- 2.4. Расстояние между отбойными палами необходимо выбирать в вависимости от цилиндрической вставки корпуса судна. Для нефтяных причалов это расстояние рекомендуется принимать равным около 30% наибольшей длины самого большого расчетного судна. Если причал обслуживает танкера одного класса по ледвейгу, то спедует располагать отбойные палы на этом наибольшем расстоянии. В случаях, когда предполагается принимать у причала и меньшие суда, между главными отбойными палами необходимо устанавливать дополнительные (промежуточные).
- 2.5. Отбойные палы могут быть использованы в качестве швартовных для шпринговых швартовов.
- 2.6. Отбойные палы рекомендуется выдвигать вперед от линии кордона грузовой платформы на расстояние, обеспечивающее воспоилтие

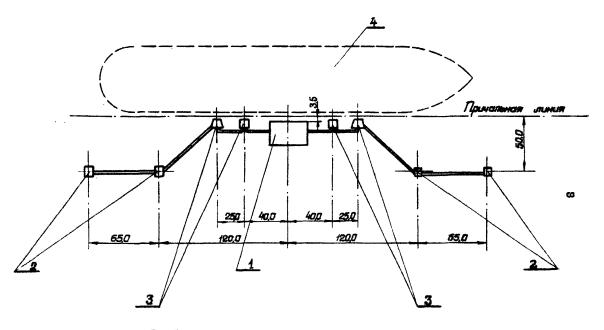


Рис. І. Компоновочная схема причала:

I — грузовая платформа; 2 — швартовные палы; 3 — отомные палы; 4 — судно дедвелтом 3000 мН

нагрузок от навала судна только самими палами.

- 2.7. Количество швартовных палов и расстояние между ними следует выбирать в зависимости от размеров расчетных судов (рис.2). Намиучшие условия расположения швартовов обеспечиваются при наличии шести швартовных полов. В зависимости от расположения и степени защищенности причала от ветра и воли может быть применена схема с четырымя швартовными палами.
- 2.8. Расстояние между швартовными палами рекомендуется принимать при шести палах:

для судов дедвейтом до 1500 MH - 40 - 55 м, для судов дедвейтом более 1500 MH - 50 - 60 м; при четырех палах:

для судов дедвейтом до 1500 MH - 80 м, для судов дедвейтом более 1500 MH - 90 м и более.

При этом в случае шести палов углы, образованные в горизонтальной плоскости с линией кордона, должны составлять:

продольными швартовыми $45^{\circ} \pm 10^{\circ}$; прижимными канатами $90^{\circ} \pm 20^{\circ}$; шпрингами $15^{\circ} + 5^{\circ}$.

Угли наклона швартовов к горизонту должны приниматься в соответствии с требованиями СНиП П-57-75.

В случае четърех швартовных палов угол между продольными швартовами и шпрингами должен составлять $80-100^{\circ}$, угол между шпрингами и линией кордона $-15^{\circ}\pm5^{\circ}$.

3. PACUET DADOB

3.1. Общие указания

3.1.1. Стержневые палы, рассматриваемые настоящим Руководством следует рассчитывать по методу предельных состояный в соответствии с тоебо-

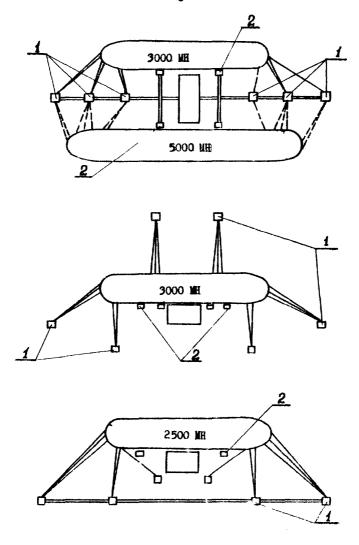


Рис.2. Схемы швартовки крупнотоннажных судов: I — швартовный пал: 2 — отбейный пал

жани мон СНиП П-51-74.

3.1.2. Номенклатуру нагрузов и их сочетания, а также характеристики грунтов, коэффициенты для определения расчетных усилий в элементах палов следует принимать в соответствии с требованиями ВСН 3-60 диниородот и настоящего Руководства.

Нагрузки на ввартовные и отбожные палы следует принимать в соответствии с требованиями СНиП Π -57-75.

3.1.3. В расчетах пвартовный пал рассматривается как пространственная рамная конструкция, опоры которой представлены стержнями, погруженными в грунт; отбойный пал рассматривается как группа стержней, погруженных в грунт и не связанных жестко поверху.

Деформативные своиства грунта и закон их изменения по глубине рекомендуется определять по данным полевых и лабораторных испытания. В случае отсутствия указанных данных деформативные свойства грунта следует определять в соответствии с требованиями СНиП П-17-77.

3.1.4. В основу расчета стержия, погруженного в грунт основания, принято дифференциальное уравнение, связывающее перемещения стержия в грунте и реакцию грунта.

З.2. Швартовные палы

3.2.1. В соответствии с методикой расчета по предельным состояниям при расчете швартовного пала должно выполняться условие предельного равновесия

$$n_c n \mathcal{N}'' \leq \frac{m}{\kappa_H} R_{np}$$
, (1)

гда R_c — во эффициент сочетания нагрузов, принимаемый по СНиЛ II-50-74; п - коэффициент перегрузки, принимаемый равным I,25;

м" - нормативная нагрузка от натяжения швартовов, опрецеляемая в соответствии с требованиями СНиП II-57-75;

то - коэффициент условий работы, учитывающий особенности
действительной работы элемента конструкции, значение которого рекомендуется принимать в соответствии
с таблицей;

К_м - коэффициент надежностя, определяемый по СНиП И-50-74.

Коэффициенты условий работы для расчета мвартовных палев

Значение /72				
Для палов на металлических опорах при числе опор		Для палов на железобетонных опорах и пелов, основание которых включает железобетон-		
15	5	1-3	4-7	7
1,0	0,9	1,0	0,9	0,75

Р_{пр} - несущая способность сооружения равная предельной нагрузке на пал, определяемая по формуле

$$R_{nn} = \mathcal{N}_1 + \Delta \mathcal{N}_2 + \Delta \mathcal{N}_3 + \dots + \Delta \mathcal{N}_n, \quad (2)$$

где \mathcal{N}_1 - нагрузка, вызывающая возникновение в наиболее нагруженной в первой стадии расчета опоре изгибающего можента, равного пределу прочности опоры на изгиб или осевого усилия, равного пределу несущей способности опоры по грунту, определяемых по СНиП II-56-77, СНиП II-17-77, СНиП II-8.3-72;

- $\Delta \mathcal{N}_2$, $\Delta \mathcal{N}_3$,... $\Delta \mathcal{N}_n$ дополнительные нагрузки, которые доведут максимальный изгибающий момент или осевое усилие в
 наиболее нагруженной опоре при, соответственно,
 второй, третьей и \mathcal{N} -ой стадии вагружения пала
 до предельной величины.
- 3.2.2. При определении перемещений пвартовного пала должно выполняться условие

$$\Delta_{poeq} \leq \Delta_{mp}$$
, (3)

- где Δ_{pure} перемещение, рассчитываемое по нормативным нагрувкам, определденым в соответствии с требованиями СНиП П-57-75:
 - Опр. предельное допустимое перемещение верха пала, принимаемое при отсутствии на пале технологического оборудования равным 0,6 м. В противном случае вадается, исходя из требований нормальной эксплуатации технологического оборудования.
- 3.2.3. Расчет швартовного пала производится по стадиям. Каждая из последующих стадий расчета выполняется в предположении, что в преднадущей стадии загружения одна из опор выходит в предельное состояние, то есть либо максимальный изгибающий момент в одной из опор достигает предельного значения, соответствующего пределу прочности опоры на изгиб, либо осевое усилие в одной из опор достигает предельного значения, соответствующего несущей способности этой опоры по грунту.
- В общем случае расчет включает n-1 стадий расчета, где n-1 стадий расчета.
- 3.2.4. Оптимизацию свайного основания швартовного пала по количеству опор, расположению их в плаже и в пространстве следует прово-

дить, используя первую стадию расчета. В качестве критерия оптивизации принимается расход материала на единицу нагрузки, вызывающей в наиболее нагруженной в первои стадии расчета опоре изгибающий момент, равный пределу прочности опоры на изгиб или осевое усилие, равное пределу несущей способности опоры по грунту.

- 3.2.5. Расчетная схема явартовного пала (рис.3) представляет собоя пространственную рамную конструкцию, элементы поторой расснатриваются как пространственные стержни с узлами, обладающими
 вестью степенями свободы (три линейных перемещения вдоль воординатных осей и три угла поворота относительно этих осей).
- 3.2.6. Опори швартовного пала, погружение в грунт основания, рассматривартся как балки на упругом основании (в общем случае переменной лесткости). В качестве расчетной принята модель основания, базирующаяся на гипотезе Винклера. Деформативные свойства грунта определяются в соответствии с п.3.1.3.
- 3.2.7. Верхнее строение пала заменяется системой перекрестных балок, работающих только на изгиб, жесткостные характеристики которых идентичны реальной конструкции.
- 3.2.8. Глубину погружения опор в грунт предварительно рекомендуется принимать:

для вертикальных опор равной свободной высоте ℓ_s сваи или сваи-оболочки;

для наклонных опор - 0,7 %.

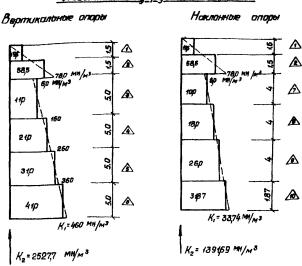
В процессе расчета длина опор корректируется. Критерием корректировки служит расчетная величина горизонтального перемещения швартовного пала (Δ poex) при действии на сооружение расчетной нагрузки.

Если расчетное перемещение менее $0.75 \, \Delta_{np}$ (допускаемого перемешения пала), то глубину погружения рекомендуется уменьшить.



Рис. З. Расчетная схема

Уславные обозначения


1 — номер уэла

О – намер элемента

намер еруппы экестковти

М — номер группы асесткости упругога основания

Жесткости упругого основания

Если расчетное перемещение больше допускаемого перемещения пада, 2.3 для находиемия оптимального решения следует рассмотреть два варианта корректировки:

уваличение жесткости опор пала;

увеличение глубины погружения опор пала.

Допускаемое перемещение пала определяется в соотвитствии с требованиями п.3.2.2.

- 3.2.9. В основу расчета швартовного пала по настоящему Руководству положен метод конечных элементов (МКЭ) в перемещениях для расчета статически неопределимых систем в упругой стадии.
- 3.2.10. Расчетную схему пала (см.рис. 3) следует представлять в виде набора упругих тел (конечных элементов), присоединенных к узловым точкам, которые нумеруются в десятичной системе счисления. Наибольшая разпость номеров узлов, относящихся к одному элементу, должна быть манамальной. Узлы по свае должны нумероваться сверху вилз.

Разбивая реальное сооружение на отдельные конечные алементы, необходимо выполнять следующе требования:

жесткостные характеристика элементов сооружения, а также топологическая связь между элементами должны в максимальной степени отражать реальные свойства рассчитываемой конструкции;

элементы конструкцыя с переменной жесткостью по длине, а также упругое основание переменной жесткости должны быть сведены к элементам со ступенчато-переменной жесткостью;

жесткости стержней, аппрокоммирующих элементы верхнего строения, полжны назначаться из условия статической эквивалектности между ними:

жестности и длины отдельних (элементов конструкции могут отличаться не более, чем на порядок. Не рекомендуется назначать жест-

- 3.2.II. Задажные нагрузки следует представлять в виде сосредсточенных узловых сил и моментов относительно трек координатиих осей в соответствии с требованиями п.2 Придожения.2.
- 3.2.12. Швартовный пал представляет собой линейно-деформируемую, упругую стержневую сястему, что позволяет использовать принцип суперпозиция, Расчет стержневой системы под действием произвольной нагрузки сводится к расчету отдельных ее элементов и к расчету всей стержневой системы в целом на действие одних узловых усллий.
- 3.2.13. Приведение внешних сил к узловым осуществляется из условия статической эквивалентности между ними, которое заключается в равенстве работ заданных внешних сил и приведенных узловых сил на любых возможных перемещениях узлов.
- 3.2.14. Расчет швартовных палов полностью ориентирован на нопользование ЭВМ. Алгоритм расчета изложен в Приложении 2 настоящего Руководства.
- 3.2.15. Расчет швартовного пала необходамо выполнять в следующей последовательности:

установление компоновочной схемы пала;

разбивка конструкции на консчине элементи;

описание исходинх данных в соответствии с указаниями Придожения
4 настоящего Руководства:

расчет пала на швартовную нагрузку в соответствия с требованиямм п.3.2.I;

анализ полученных результатов в корректировка, в случае необходимости, исходной расчетной схемы с целью получения оптимального решения.

3.2.16. Процесс расчета швартовного нала из каждой стадия расчета состоит из следующих этапов:

вичесление матриц лесткости конечицу элементов, составляющих конструкцию;

формирование жатрицы жесткости всей конструкции;

формирование вектора грузовых членов от "единичного" горизонтального нагружения;

решение системы уравнений для определения основных неизвестных; спределение внугренних усилий;

определение свам (или свай), в которой наступило предельное состояние на данной стадии расчета;

корректировка матрицы месткости всей конструкции.

- 3.2.17. В результате расчета определяются предельная несущая способность и перемещение верха швартовного пала.
- 3.2.18. Для наглядности расчета швартовного пала в Приложении 6 приведен пример расчета.

Программа расчета швартовных палов на языке PL для ЭВМ типа EC выпушена отдельным томом и в настоящем Руководстве не приводится.

3.3. Отбойные палы

3.3.1. В соответствии с методиной расчета по предельным состояниям при расчете отбойного пала должно выполняться условие

$$E_{nR} \leq E_n$$
, (4)

- гже E_{н6} расчетное значение кинетической энергии навала судна пои подходе его к причальному сооружению; определяемое по формуле (6) п.3.3.5:
 - Е_п расчетная энергопоглощающая способность пала вместе с отбоиными устроиствами, определяемая по формуле

$$E_n = E_1 + E_2$$
, (5)

где E₁ - энергопоглощающая способность отбойных устроиств, причимаемая по паспортным данным или в соответствии

- с рекомендациями Руководства <u>П 58-76</u>; ВНИИГ ; ВНИИГ собственно пала, определяемая по формулам (20) и (21) пп.3.3.20 и 3.3.21.
- 3.3.2. Исходными данными для расчета отбожного папа являются: водоизмещение судна;

скорость подхода судна к причалу;

количество палов, воспринимающих навал;

характеристика отбольных устройств;

отметка точки приложения усилия навала на пал;

характеристика пала (наружный дивметр опоры, толщина стенки, расчетное сопротивление матермала пала);

характеристика грунта основания.

3.3.3. Отбойный пал рассчитывается в следующей последовательности:

по расчетному водоизмещению и нормальной составляющей скорости подхода определяется расчетная энергия навала судна по формуле (6) п.3.3.5;

исходя из предполагаемой конструкции пала, определяется его расчетная энергопоглощающая способность по формуле (20) и (21) пп.3.3.20 и 3.3.21. В случае, если энергопоглощающая способность пала недостаточна, следует предусмотреть установку на пале соответствующего отбойного устройства. При наличии отбойных устройств энергопоглощающая способность пала определяется как сумма энергоемкостей собственно пала и отбойных устройств;

по горизонтальной нагрузке, принягой для определения расчетной энергопоглощающей способности, вычисляются изгибающие изменты и поперечные силы в пале по формулам (14) и (17) л.3.3.15, а также реакция грунта основания по формуле (11) л.3.3.11.

- 3.3.4. В случае многосвайного пала эсе опоры должны быть одинакомой жесткости, а распределение усилий при навале судна и поглошение эксплии поинимается равномерным межлу всеми опорами нала. Необходимое число опор принимается в соответствии с расчетной внергией навала и эмергопогложающей способностью одной опоры.
- 3.3.5. Расчетное значение кинетической энергии навала судна при подходе еге к сооружению определяются в соответствии с требовани вы СНиП П-57-75 по бормуле

$$E_{ns} = n_e \cdot n \cdot \left(\frac{D_e \cdot v^2}{2q} \right), \qquad (6)$$

П_ - коэффициент сочетания нагрузок, принимаемый по 11.11 СНиП П-50-74:

- коэффициент перегрузии, принимаемый равным 1,25;

- коэффициент, принимаемый по СНиП П-57-75;

- расчетное водонамещение судна;

- нормальная (к поверхности сооружения) составляющая скорости подхода судна, принимаемая по СНиП П-57-75;

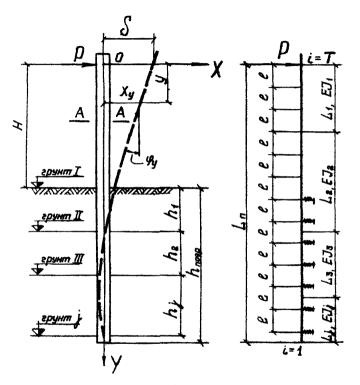
- ускорение сили такести.

3.3.6. Расчет отбойного пала сводится и расчету гибиого стериня, погруженного в грунт основания, на действие горизонтальной сили. Расчетная схема пала (рис.4) характеризуется следующими параметра-MOR :

- горизонтальная сила, получаемая в процессе расчета;

- расстояме между точкой приложения горизонтальной

силь Р и двои:


З - перемещение пала в точке приложения силы Р;

- координата сечения пала;

- перемещение сечения пала с координатой 4

- угоя поворота сечения пала;

- длина участка пала смементом инершии $\overline{1}_{ar{i}}$.

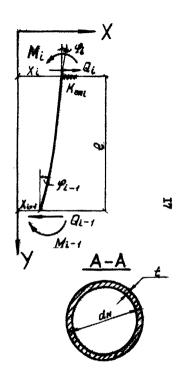


Рис. 4. Расчетная схема отбойного пака

 d_{μ} - наружный диаметр пала;

t - толщина стенки трубы;

 h_i - толщина слоя грунта.

3.3.7. При расчете пала используется решение для гибкой балки на податливом основании в виде дифференциального уравнения (9) п.3.3.9. Задачей расчета является определение силы P, при которой обеспечиваются необходимая энергопоглощающая способность и прочность пала. В процессе решения дифференциального уравнения получают для нескольких ступеней нагрузки (последняя ступень равна силе P) перемещение пала в точке приложения силы P и значения изгибающих исментов и перерезывающих сил по длине пела.

3.3.8. В первои приблыжении величина силы $\,P\,$ определяется по формуле

$$p = \frac{M}{H}, \qquad (7)$$

где M - несущая способность сечения пала на действие изгибаршего момента;

Н - определено в п.3.3.6.

Несущая способность пала на действие изгибающего момента опоеделется по формуле

$$M = \frac{m}{K_{ii}} RW,$$
 (8)

где /п - коэффициент условии работы, принимаемый до СНш П-В.3-72;

> К_н – коэффизиент надежности, принимаемый по СНиП П-50-74 в зависимости от класса причального сооружения;

R — расчетное сопротивление стали, принимаемое по СНиП П-B.3-72: W - номент сопротивления сечения пала.

3.3.9. Дифференциальное уравнение упругой оси пала имеет вид

$$EJ \frac{d^4x}{dy^4} = -E_s \cdot x, \quad (9)$$

гле ЕЗ - жесткость пала при изгибе;

 $oldsymbol{x}$ — пережещение сечения пала с косрдинатой $oldsymbol{y}$;

у - координата сечения пала;

E₃ - коэффициент реакции грунта (пп.3.3.10, 3.3.12).

ПРИМЕЧАНИЕ. Если при расчете принята нелинейная зависимость между реакцией грунта и перемещением пала на данной глубине (рис. 5), то процедура решения уравнения (9) носит итерационный характер.

3.3.10. Коэффициент реакции грунта определяется по формула

$$E_{s} = \frac{R_{ss}}{x}, \qquad (10)$$

где $R_{\rm ap}$ — реакция грунта на единицу длины пала, определяющая по формуле (11) п.3.3.11;

 ${m x}$ – перемещение сечения пала ниже уровия дна.

3.3.11. Реакция грунта R_{sp} перемещению пала определяется по формуле

$$R_{en} = \left[K_o + K \left(y - H - \sum h_i \right) \right] x^{\ell} \cdot d_H , \quad (11)$$

где K_o - параметр, характеризующий деформативные спойства грунга на границе слоев при многослойном основании и определжений по формуле (13) п.3.3.14;

 к – параметр, характеризующий деформатизные свойства грунта каждого слоя и принимаемий по данным лабораторных и полевых испытаний;

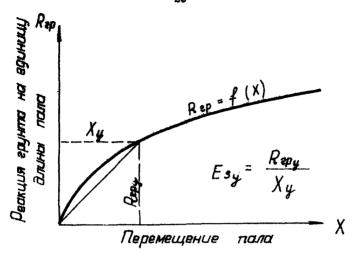


Рис. 5. Зависимость между перемещением пала и реакцией грунта

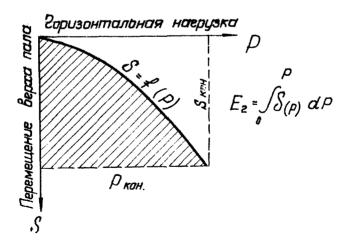


Рис.6. Зависимость между горизонтальной нагрузкой и перемещением верха пала

Ч, **Н**, **d**, **u h**; - определены в п.3.3.6;

степенк, характеризующий изменение

реакции грунта с глубиной и принимаемый по данных пабераторных и полвамх испытаний:

ж – перемещение сечения пала с координатой

 по казатель отепени, характеризующий изменение реакции грунта от перемещения и принимаемый по ламиым лабораторных и полевых испытаний.

ПРИМЕЧАНИЕ. При отсутствии данных полевых и лабораторных испытаний о деформативных свойствах грунга он рассматривается как линейно деформируемый материал. В этом случае показатели степени α и β , принимаются равными единице, а параметр κ определяется по СНиП П-17-77.

3.3.12. Коэффициент реакции грунта E_s в случае, если в формуле (11) п.3.3.14 показатель степени B разен единице, определяется по формуле

$$E_s = \left[K_o + K \left(y - H - \sum h_j \right) \right] \cdot d_H, \tag{12}$$

где $K_b u K$ — определены в п.3.3.11; $y_i H_b h_i u d_n$ — определены в п.3.3.6.

3.3.13. При многослойном основании в пределах каждого слоя грунта принимается свой параметр K . На границе слоев этот параметр принимается по нижнему слор.

3.3.14. Параметр **К**_o , характеризующий деформативные свойства грунта на границе слоев, определяется по формуле

$$K_o = K \left(y - H \right)^{\alpha}, \tag{13}$$

где K и α - определени в п.3.3.11;

U и H - определени в п.3.3.6.

ПРИМЕЧАНИЕ. Для споя грунта, где погазатель степени α разен нуло; параметр κ_{a} принимается также разным нуло.

3.3.15. Решение дифференциального уравнения (9) п.С.3.9 выполняется матричным методом. Для реализации метода используются следующие соотношения (ск.рис.3.12):

$$\mathsf{M}_{i} = \mathsf{M}_{i-1} + \ell \, \mathcal{Q}_{i-1}; \tag{14}$$

$$x_{i} = -\frac{\ell^{2}}{2EJ_{i}} M_{i-1} - \frac{\ell^{3}}{6EJ_{i}} Q_{i-1} + \ell \psi_{i-1} + x_{i-1};$$
 (15)

$$\varphi_{i} = -\frac{\ell}{E\mathcal{I}_{i}} M_{i-1} - \frac{\ell^{2}}{2E\mathcal{I}_{i}} Q_{i-1} + \mathcal{G}_{i-1}; \qquad (16)$$

$$Q_{i}^{2} = \frac{K_{in_{i}} \ell^{2}}{2 E \sigma_{i}} M_{i-1} + \left(1 - \frac{K_{on_{i}} \ell}{6 E \sigma_{i}}\right) Q_{i-1} + K_{on_{i}} \ell \psi_{i-1} + K_{on_{i}} x_{i-1}, (17)$$

r, 78

М; - изгибающий номент;

 x_i - перемещение свчения пала;

угол поворота свчения пала;

Q. - перерезывающая сила;

€ . - mar, с моторы: ведется расчет;

K_{mi} - жесткость "опор", определяемия по формуле (18) п.3.3.16:

ЕЗ: - жесткость сечения нала при изгибе;

iui-1 - соответственно последующее и предыдущее сечение пала (си.рис.4).

S.3.13. Востиость грунтових опор K_{en_i} определентся по **формуло**

$$K_{\mathbf{m}_{i}} = \mathbf{E}_{\mathbf{S}} \cdot \mathbf{\ell}$$
, (18)

тле E_s и C — определены в пп.З.З. 10 и З.З. 15 соответственно. З.З. 17. В случие, если ная по длине состоит из труб со стенкой переженной тольны, необходию после определения горизонтальной

расчетной силн P , проверить сечение какдой трубы по фотмулам (8) п.3.3.8 и (19) п.3.3.18.

3.3.18. Проверка несущей способности пала на действие перерезывающей силы производится по формула

$$Q \in \frac{m}{K_F} R_{cp} \quad \text{as Fid}_o t \quad , \tag{19}$$

гда — перерезивающая сила, определявиая по уролянению (17) п.3.5.15:

 гтъ – коэффициент условия работы, принимаемый по СНиП П-Б.3-72;

К_н – кооффициент надежности, принимаемых по СНиП П-50-74 в зависимости от класса причального сооружения;

 R_{cp} — расчетное сопротивление стали срезу, принимаеное по СНиП П-B.3-72:

 d_a - средний диаметр труби;

t - толщина стенки труби.

3.3.19. Глубина погружения пала в грунт определяется в процессе расчета пала. За расчетную глубину погружения принимается координата у второй нулевой точки упругой линии пала (см.рис.4). Эта точка определяется в результате решения дифференциального уравнения (9) п.8.3.9.

3.3.20. После выполнения требований пп.3.3.17 – 3.3.19 определяются расчетная энергеноглощающая способность соботвенно пала. Для этого расчетная горизонтальная сила разбивается на ступени. Для каждой ступени нагрузки решается дифференцияльное уравнение (9) п.3.3.9 и определяется перемещение в течке приложения сили, после чего строится график зависимости "перемещение – нагрузка" (рис.6). Энергеноглощающая способность собственно пала E_2 равна площади чигуры под кривой S = f(p) (см.рис.6) и определяется по формуте

$$\mathsf{E}_{\mathsf{R}} = \int_{\mathsf{R}}^{\mathsf{P}} \boldsymbol{\delta}^{\mathsf{P}}(P) \, dP \, , \qquad (20)$$

глю Р - расчетная горивонтальная сила;

 δ' - перемещение пада в точке приложения силы P .

3.3.21. Энергопоглощающая способность пала в случае, если грунт рассматривается как линейно деформируемай материал, определяется по форкуле

$$E_{\bullet} = 0.5 PS, \qquad (21)$$

rде $P \cup S$ - определены в п.3.3.20.

3.3.22. Расчет собственно пала полностыю ориентирован на ЭВМ. Алгорити расчета изложен в Приложении 3 настоящего Руководства.

3.3.23. Если энергопоглощающая способность собственно пала, определенная по формулам (20) и (21) пп.3.3.20 и 3.3.21, недостаточна, необходимо предусмотреть отбойные устройства. В этом случае суммарная энергопоглощающая способность пала E_n определяется по формуле (5) п.3.3.1.

3.3.24. При применении отбойных устройств должно выполняться следующее условие

$$\rho_{am} \leq P,$$
(22)

где P_{am} - усилие, при котором реализуется паспортная энерго-

 Р - горизонтальная сила, на которую рассчитан собственно пал.

3.3.25. Площадь отбойного щита для распределения реактивного усилия от пала на корпус судна определяется по формуле

$$S = \frac{p}{q} \quad , \tag{23}$$

- где P горизонтальная сила, на которую рассчитан собственно пал;
 - предельная нагрузка на бортовое перекрытие судна,
 принимаемая по паспортные данные или в соответствии
 с рекомендациями Руководства П 58-76 вимиг
- 3.3.26. Для наглядности расчета отбойного пала в Приложении 7 (справочное) приведен пример расчета.

Программа расчета отбойного пала составлена на явине PL для ЭВМ типа EC, выпущена отдельным томом и в настоящем Руковойстве де приводится.

4. РЕКОМЕНДАЦИИ ПО КОНСТРУИРОВАНИЮ СТЕРЖНЕВЫХ ПАЛОВ

- 4.1. При конструировании стержиевых палов следует выполнять общие конструктивные требования ВСН 3-60 и дополнительные требования настоящего Руководотва,
- 4.2. Конструкция стержиевых палов должиа обеспечивать наиболье полное использование их несущей способности.
- 4.3. Стержиевые палы рекомендуется выполнять из стальных труб. Для швартовных палов могут быть использованы железобетонные сваиоболошки.

В целях экономии металла необходимо использовать труби с повышенными прочностивми характеристиками.

- 4.4. Расстояние между осями вертикальных или наклонных висячих свай в плоскости их нижних концов должно быть не менее трех диаметров сваи. Расстояние в свету между сваями-оболочками должно быть не менее 1 м.
- 4.5. Отметка верха палов выбирается с учетом возможности их эксплуатации при воздействии расчетной волин, а также с учетом требования размещения на них швартовных и отбойных устройств.

- Верхнему строению швартовного пала следует придавать в пламе закруглению по углам форму.
- 4.7. Величину маклона свай и свай-оболочек для швартовных палов следует принимать в ванисимости от диаметра сваи (α') в жетрах не более:

3:1 при $d \le 1,0$ м; 4:1 при $1 \le d \le 1,2$ м; 5:1 при $d \le 1,6$ м; 8:1 при $d \le 2,0$ м.

Сваи диакетрои более двух метров погружаются без наклона. При этом следуей учитывать, что увеличение наклона опор приводит к увеличению несущей способности стержневого пала.

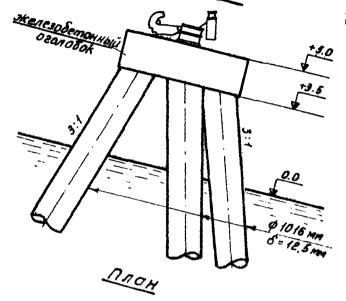
Рекомендуемые схемы швартовных палов показаны на рис.1,2,3 Приложения 1 настоящего Руководства.

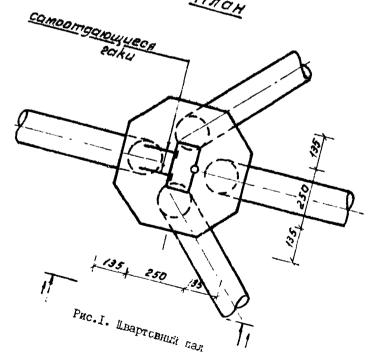
- 4.8. Максимальное отклонение швартовных палов при расчетных нагрузках не должно превышать 0,6 м. При размещении на пале техно-погического оборудования на величину отклонения швартовного пала должно быть наложено более строгое ограничение, определяемое тре-бованиями размещения и эксплуатации оборудования.
- 4.9. Швартовные палы необходимо оборудовать пвартовными устройствами для крупнотоннажных судов (эвектрошпили и самоотдающиеся гаки) и судов технического обслуживания.
- 4.10. При конструировании отбойных налов следует отдавать предпочтение конструкции из одной грубн, так как такие паль одина-ково работают во всех направлениях и не требуют сложных раскрепле-ний верхнего строения. Схемы отбойных палов приведены в Приложении 1 настоящего Руководства (рис.4,5,6).
- 4.11. В случае иногосзаиного отбойного пала количество спор рекомендуется применять не более пести. В плане опоры размещаются пибо в пределах прямоугольника, либо трапеции. Трубы могут быть

вабиты с небольшим наклоном в сторону акватории, что совдает возможность повысить энергопоглощающую способность пала.

- 4.12. Отбойные палы должны быть оборудованы отбойными щитами для распределения реактивного усилмя от пала на корпус судна. Площадь нита выбирается с таким расчетом, чтобы нагрузка на борт судна не превышала допускаемой величины. Лицевая поверхность отбойного шита должна покрываться древесиной твердых пород.
- 4.13. Опоры отбойных палов для достивения больней гибиости и экономии металла рекомендуется выполнять из труб со стенками переженной толщины в соответствии с эпорой изгибающих моментов по висоте пала. При этом изменяется внутренний диаметр труб, а наружный остается постоянным.

Для верхних участков отбойных палов рекомендуется применять имткую оталь, чтоби упростить нарашивание опоры в случаях местных колюбания глубины забивки.


4.14. Крепление отболного щита к палу рекомендуется выполнять при помощи шаршира, что поволяет поворачиваться щиту на угол, под которые судно наваливается на отболным пал.


Для ограничения поворота отбойного щита необходимо устанавливать ограничители. Возврат щита в исходное положение производится резиновным амортиваторами, устанавливаемыми между отбойным щитом и палом (см.рмс. 5 Приложения I жастоящего Руководства);

- 4.15. Сопряжения отдельных опор многосвайного отбойного пала в один куст следует выполнять при помощи специальной плиты, допускающей свободное смещение каждой опоры как консольной сваи (см.рис. 6 Приложения I настоящего Руководства);
 - 4.16. Для равномерной передачи моментов кручения на каждую опору при навале судна на многосвайный отбойный пал в случае вмещентренного удара в верхней части каждой опоры рекомендуется устанавливать балки врашения, закрепляемые сверху опорной плиты.

- 4.17. При установке на пал отбойных устройств их энергоемкость рекомендуется принямать в пределах 20-50% от общей энергопоглощающей способности отбойного пала. При этом нижний предел относится к палам, воспринимающим усилие до 1000 кН, верхний более 1000кН.
- 4.18. Перечень заимствованных нормативно-технических документов указан в Приложении 8.

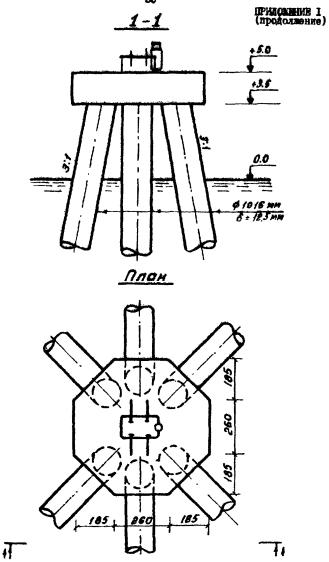
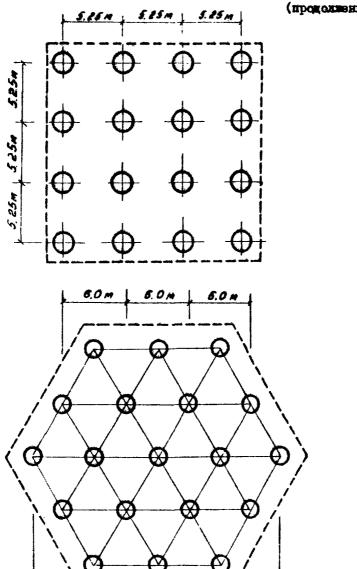
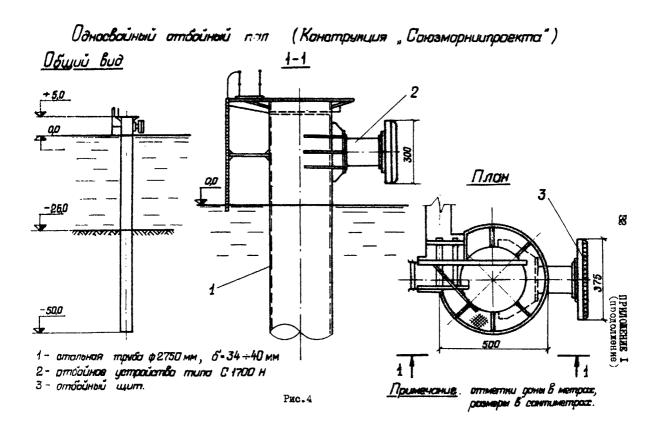
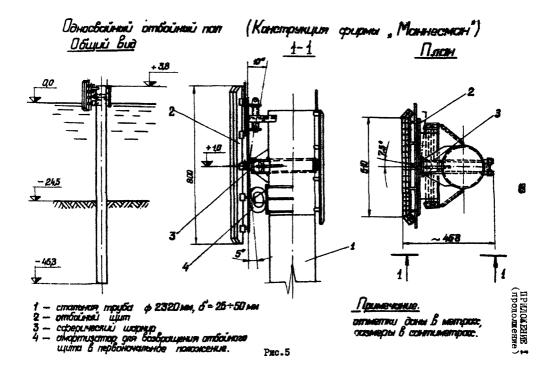
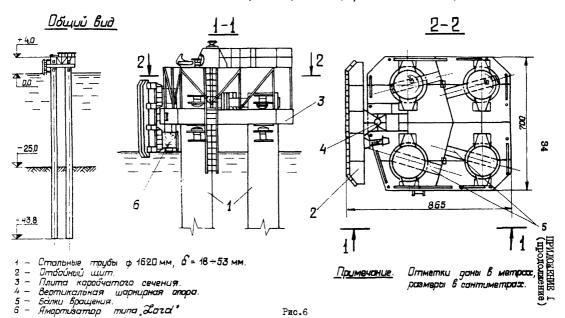


Рис.2. Евартовный пал


Рис.З. Планы свайных оснований из железобетонных свай-оболочек

6.0 m


6.0m

6.0 M

Многосвайный отбайный пал (Конструкция фирмы Маннесман)

AJITOPUTM PACUETA HBAPTOBHIX JAJIOB *

- 1. Расчет швартовных палов в каждой стадии расчета реализует метод перемещений для расчета статически неопределимых систем, использующий положения метода конечных элементов (МКЗ).
- 2. При описании расчетной схемы (рис.3 п.3.2.5), жесткостных жарактеристик элементов, задании нагрузок и определении усилий в элементах используются три системы координат:

общая система координат сооружения;

местная в узлах - подвижная система координат, связанная с центрами узлов;

местная подвижная система на упругих конечных элементах.

Общая система координат сооружения является правой декартовой системой координат $\mathcal{X}Y\mathcal{Z}$ (рис.1).

В каждом уэле системы определяется местная правал декартова система координат $\mathcal{X}_o\mathcal{Y}_o\mathcal{Z}_o$. Центр этой системы совмещается с центром узла, а направление осей принимается параллельным соответствующим осям общей системы координат (см.рис.1).

С каждым упругим элементом связана система координат, наиболее удобная для описания напряженно деформированного состояния этого элемента. Для стержня принимается правая декартова система координат $\mathcal{X}_1\,\mathcal{Y}_1\,\mathcal{Z}_1$ (рис.2). Ось $\,\mathcal{Y}_1\,$ направляется вдоль стержня от его начала к концу (от узла с меньшим номером к увлу с большим номером). Ось $\,\mathcal{X}_1\,$ направляется так, что если смотреть с ее положительного конца, ось $\,\mathcal{Y}_1\,$ до совмещения с осьо $\,\mathcal{Z}_1\,$ должна вращаться против часовой стрелки на угол $\,\mathcal{A} < \mathcal{F}_1\,$. Ось $\,\mathcal{Z}_1\,$ направляется таким образом, чтобы система координат $\,\mathcal{X}_1\,\mathcal{Y}_1\,\mathcal{Z}_1\,$ была правой.

При составлении алгоритма и программи использовани материалы разработок Черноморниипроекта.

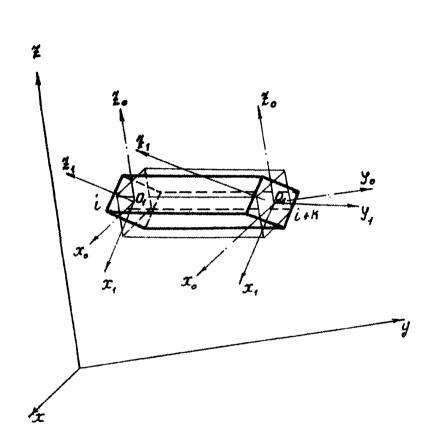


Рис.1. Система кооплинат ссотувания

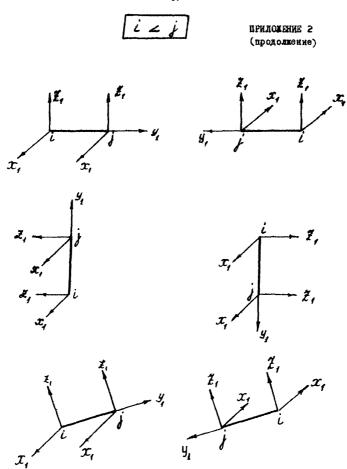


Рис. 2. Местная система коогдинат для стериней

ПРИЛОЖЕНИЕ 2 (продолжение)

- З.Перемещения узлов определяются в общей системе координат, жесткостиме карактеристики элементов и усилия в местной системе координат элемента.
- Связь между узловыми перемещениями и внешней нагрузкой, действующей на сооружение, выражнется соотношением

$$|q|[K] = |R| , \qquad (1)$$

где

- вектор перемещений узлов конструкции, определяемый по п. 5 настоящего Приложения:
- [K] матряца жесткости системы, определяемая по п. 6 настоящего Приложения;
- | R | вектор внешних узловых нагрузок, определямый по п. II настоящего Приложения.
- 5. Вектор перемещений узлов конструкции записывается

$$\begin{vmatrix} q \\ | q' | \\ | q'' | \end{vmatrix}, \qquad (2)$$

$$\begin{vmatrix} q'' \\ | q'' | \end{vmatrix}$$

$$\begin{vmatrix} q'' \\ | q'' | \end{vmatrix}$$

rze

Каждый узел обладает местью степенями свободы, которым ставится в соответствие вектог узловых перемещений (неизвестных):

$$\left|q^{2}\right| = \begin{vmatrix} U_{x} \\ U_{y} \\ U_{z} \\ Q_{x} \\ Q_{y} \\ Q_{z} \end{vmatrix}, \qquad (3)$$

ULMUOTERNE 5 (продолжение)

где
$$U_x$$
 — минейное перемещение вдоль оси x ; U_y — минейное перемещение вдоль оси U_z ; U_y — минейное перемещение вдоль оси U_z ; U_z — угол поворота относительно оси U_z ; U_y — угол поворота относительно оси U_z ; U_y — угол поворота относительно оси U_z ; U_z — угол поворота относительно оси U_z ; U_z — угол поворота относительно оси U_z ; U_z — угол поворота относительно оси U_z .

6. Матрица жестности системн имеет вид
$$\begin{bmatrix} \sum_{t \in I} K_{n}^{t} & \sum_{t \in I} K_{n}^{t} & \sum_{t \in I} K_{n}^{t} \\ \sum_{t \in I} K_{n}^{t} & \sum_{t \in I} K_{n}^{t} & \sum_{t \in I} K_{n}^{t} \end{bmatrix} = \begin{bmatrix} \sum_{t \in I} K_{n}^{t} & \sum_{t \in I} K_{n}^{t} & \sum_{t \in I} K_{n}^{t} \\ \sum_{t \in I} K_{n}^{t} & \sum_{t \in I} K_{n}^{t} & \sum_{t \in I} K_{n}^{t} \end{bmatrix}$$

где знак TE_{ij} означает суммирование по всем конечным элемента TE_{ij} определяемал по г.7

$$\begin{bmatrix} K_{ij} \\ \vdots \end{bmatrix} = \text{подматрица матрицы жесткости элемента} \quad TE_{ij} \\ \text{содержащего уэлн } i, j, \text{ определяемал по г.7} \\ \text{настоящего Приложения.}$$

настоящего Приложения.

7. Матрица жесткости комечного элемента стержневого типа имеет вид:

$$\tilde{K} = \begin{bmatrix} \kappa_{ii}^t & \kappa_{ij}^t \\ \kappa_{ji}^t & \kappa_{jj}^t \end{bmatrix} , \qquad (5)$$

где K_{ii}^{τ} , K_{ij}^{τ} , K_{ji}^{τ} , K_{ji}^{τ} - ко эффициенты матрицы жестко сти конечного элемента, определяение по .п.9,10 настоящего Приложения.

продолжение 2

8. Напряженно деформированное состояние свай, как балек постоянного сечения на упругом основании постоянной жесткости, загруженных по концам, описывается дифференциальным уравнением

$$E\mathcal{I}\frac{d^{\prime }x}{dy^{\prime }}=-C\mathcal{X}, \qquad \qquad (6)$$

где ЕЗ - жесткость опоры на изгиб;

С - коэффициент постели;

🗶 - перемещение сечения опоры пала с координатой 🚜 ;

у - координата сечения опоры в местной системе координат.

Решение этого уравнения дает реакции в балке на упругом основании с защемленным концами от единичных перемещений концевых сечения

при повороте певого сечения на угол 🦞 = 1

$$R_{A} = m E J \frac{BC - AD}{C^{2} - BD} ; \qquad (7)$$

$$R_{\mu} = m^{2} E \mathcal{J} \frac{AC - B^{2}}{C^{2} - BD} ; \qquad (8)$$

$$\mathcal{N}_{\mathbf{g}} = m \mathcal{F} \mathcal{I} \frac{\mathcal{D}}{c^{\ell} - \mathcal{B} \mathcal{D}} ; \qquad (9)$$

UDNUMBERNE S

(продолжение)

$$R_{a} = -m^{2}E\mathcal{I} \frac{C}{C^{2} - BD} ; \qquad (10)$$

при перемещении левого сечения на δ = 1

$$M_{q} = m^{2} F \mathcal{I} \frac{AF + 4D^{2}}{F^{2} - 8D} ; \qquad (11)$$

$$R_{A} = m^{2} E \mathcal{I} \frac{4ED + AB}{c^{2} - BD} ; \qquad (12)$$

$$M_{g} = m^{\ell} \mathcal{E} \mathcal{I} \quad \frac{F}{F^{\ell} - B \mathcal{D}} \quad ; \tag{13}$$

$$R_{B} = -m^{g} E \mathcal{I} - \frac{F}{F^{\ell} - B \mathcal{D}} , \qquad (14)$$

где $m = \sqrt{\frac{4}{ET}}$ - коэффициент деформации стержня; вирина сечения стержия;

 $\mathcal{A},\mathcal{B},\mathcal{D},\mathcal{F}$ – гиперболо-тригонометрические функции:

$$\mathcal{A} = \cos \lambda + ch \lambda \tag{15}$$

$$B = \frac{\sin \lambda \cdot \cosh \lambda + \cos \lambda \cdot \sinh \lambda}{2}; (16)$$

приложение 2

$$D = \frac{\sin \lambda \cosh \lambda - \cos \lambda \sinh \lambda}{4}; \quad (17)$$

$$F = \frac{\sin \lambda \sinh \lambda}{8}, \quad (18)$$

где $\mathcal{J} = \ell m$ - приведенная длина стержня; ℓ - полиая длина стержня.

$$\mathcal{M}_{Kp} = \frac{G\mathcal{I}_{KD}}{\ell} \frac{\hat{J}_{KD}}{\ell h} , \qquad (19)$$

гле \mathcal{GI}_{p} - жесткость балки на кручение;

$$\hat{\mathcal{J}}_{\kappa\rho} = \ell \sqrt{\frac{\kappa_{\nu} \delta^{\sigma}}{\ell 4 G \mathcal{I}_{\kappa\rho}}} , \qquad (20)$$

где К, - коэффициент жесткости основания при неравномерном сжатии, определяемым по п. 14 настоящего Приложения.

Реакции, определяемые формулами (7) - (14), (19), представляют собой коэффициенты матрицы жесткости конечного элемента - белки на упругом основании - в местной системе координат.

9. Коэффициенти матрицы жесткости консчного элемента – стержня с защемленными концами – представляют собой реакции в стержне от единичных перемещений концевых сечений и имеют вид:

IIPWAOMEHME 2 (продолжение)

риала стержия;

 f_{z} — площадь поперечного сечения; \mathcal{J}_{xz} , \mathcal{J}_{xz} — моменты инерции поперечного сечения относительно осеи x^{z} , z^{z} ;

 \mathcal{J}_{qq} — геометрический фактор кругильной жесткости поперечного сечения.

10. Перевод матриц жесткости конечных элементов в общую систему координат производится с помодыю следующего соотношения:

$$\mathcal{K}^{t} = \left(\int_{0}^{t} \right)^{t} \mathcal{K}_{n}^{t} \int_{0}^{t} , \qquad (24)$$

 $\mathcal{H}_{_{A}}^{^{2}}$ – матрица жесткости элемента $\ell_{_{2}}$ в местной системе

жоординатных осей;
— матрица преобразования векторов перемещений и усилий во всех узлах, принадлежащих элементу ℓ_t ;

$$\lambda^{i} = \begin{bmatrix} \lambda_{i}^{i} \\ \lambda_{j}^{i} \\ \lambda_{m}^{i} \end{bmatrix} .$$
(25)

При этом матрица направляющих косинусов осей x, y, x, zотносительно осей \mathcal{X} \mathcal{Y} , \mathcal{Z}

$$\begin{bmatrix}
\cos(x, x^{2}) \cos(y, x^{2}) \cos(x, x^{2}) \\
\cos(x, y^{2}) \cos(y, y^{2}) \cos(x, y^{2}) \\
\cos(x, x^{2}) \cos(y, x^{2}) \cos(x, x^{2})
\end{bmatrix}$$
(26)

приложение 2 (продолжение)

11. Вектор внешних узловых нагрузок имеет вид

$$|A| = \begin{vmatrix} |A'| \\ |A'| \\ |A'| \end{vmatrix},$$
 (27)

r.ne

$$\left| \mathcal{A}^{t} \right| = \sum_{t \in \mathcal{K}} \mathcal{A}_{\mathcal{K}}^{t} = \begin{vmatrix} \sum_{t \in \mathcal{K}} \mathcal{A}_{\mathcal{H}}^{t} \\ \vdots \\ \sum_{t \in \mathcal{K}} \mathcal{A}_{\mathcal{E} \mathcal{K}}^{t} \end{vmatrix}$$

$$\sum_{t \in \mathcal{K}} \mathcal{A}_{\mathcal{E} \mathcal{K}}^{t}$$

$$(28)$$

Знак $\tau \in \kappa$ у сумми означает суммирование по всем элементам ℓ_{τ} , содержащим увел κ .

12. Коэффициент постели грунта по боковой поверхности опоры определлятся по формуле

$$C_{\mathbf{z}} = K \tilde{\mathbf{z}} , \qquad (29)$$

r.ae

 ${\mathcal Z}$ - координата, отсчитиваемая от уровня грунта;

К – коэффициент пропорциональности упругих свойств грунта, принимаемый по СНиП П-17-77.

 Коэффициент постели грунга под нижни: концом свам или свам-оболочки определяется по формуле

$$C_{\kappa} = \frac{\kappa \cdot \mathcal{I}_{o}}{02 \mathcal{D}_{o}} , \qquad (30)$$

IPHAOTEHUE 2 (продолжение)

к – определен выше;

 \mathcal{Z}_n — линейный параметр в и, принимаемый \mathcal{Z}_n = 10 и, всли глубина расположения нижнего конца сваи $h \leq 10 \text{ m}$, when $\tilde{Z} = h$, early h > 10 m;

0,2 - экпирический коэффициент, в

 \mathcal{J}_{μ} — наружный диаметр круглого или сторона квадратного или примоугольного сечения сваи, отнесенная соответственно, и сечению конца сваи-оболочки или сваи, параллельная плоскости действия нагрузки, в и.

14. Сопротивление упругой среды кручению и сдвигу характеризуется коэффициентами жесткости при неравномерном сватии (повороте) K_{ν} и сдвиге K_{∞} .

Коэффициент жесткости основания при неравномерном скатии определяется по формуле

$$K_{y} = \frac{\omega_{y} E_{to}}{\sqrt{F} \left(1 - M^{2}\right)} . \tag{31}$$

По эффициент жесткости основания при сдвиге определяется по to puyine

$$\mathcal{H}_{x} = \frac{\omega_{\tilde{x}} E_{\varphi}}{VF(1-M\omega_{x})(1+M)}, \tag{32}$$

гле \mathcal{E}_{ip} - модуль деформации грунта;

м - коэффициент Пуассона грунта; F - пложадь полошви фундамента;

 ω_x , ω_g — безразмерные коэйдициенты, определяеные в зависимости от состношения сторон подошвы опоры.

IPHNOMEHUE 2

(продолжение)

При $F > 10 \text{ м}^2$ невависимо от соотвошения размеров подошвы фундамента величины H_{ψ} и H_{π} допускается принимать равными:

$$K_{\psi} = 2K_{\chi} ; K_{\pi} = 0.7 K_{\chi} .$$
 (88)

- 15. Характерной особенностью метода конечных элементов является то, что при правильной нумерации неизвестных система уравнений имеет ленточную структуру, а матрица коэффициентов симетрична относительно главной диагонали.
- Для решения системы уравнения применен метод исключения Гаусса.
- Решением системы канонических уравне ил МКЭ является вектор узловых перемещений

$$|q| = [R]^{-1} |R|$$
 (34)

Каждому элементу $\mathcal{L}_{\mathbf{z}}$ с увлами $\mathcal{L}_{\mathbf{y}}$ соответствует вектор его перемещений, имеющий вид

$$\left|q\right|^{2} = \begin{vmatrix} |q_{i}| \\ |q_{j}| \end{vmatrix}, \tag{35}$$

где $|q_i|$, $|q_i|$ - вектор узлових перемещений, определлений по формуле (3) п.5.

18. Внутренние усилия в элементах определяются по формуле

$$\left| \mathcal{N} \right|^{t} = \left[u \right]^{t} \left| q \right|^{t} ,$$
 (36)
где $\left| q \right|^{t}$ - определен выже;
$$\left[u \right]^{t} - \text{матрица усилий элемента } \ell_{z}$$

приложение 2 (продолжение)

$$\left[\alpha\right]^{t} = \left[\beta\right]^{t} \lambda^{t},$$

где [//] - матрица жесткоти конечного элемента, определяемая формулой (5) п.7;
- матрица преобразования, определяемая формулой
(25) п.10.

- 19. В результате расчета получают перемещения увлов в общей системе координат, усилия в элементах сооружения в местной системе координат, а также нагрузку, которая вызывает возникновение в наиболее нагруженной опоре изгибающего можента, равного пределу прочности опоры на изгиб или осевого усилия, равного пределу несущей способности опоры по грунту основания на сжатие или растяжение.
- 20. На первой стадии расчета для нахождения минимальной нагрувки, вызывающей в одной из опор реализацию предельного изгибающего момента или предельного осевого усилия, определяются:

нагрузка, вызывающая появление предельного момента в одной из опор

$$\mathcal{N}_{i}^{n} = \mathcal{N} \quad \mathcal{K}_{n(i)} = \mathcal{N} \quad \frac{[N]_{i}}{M_{i(i)}} \quad ; \tag{37}$$

нагрузка, вызывающая возникновение предельного сжимающего усилия в одной из опор

$$\mathcal{N}_{i} = \mathcal{N} \; \mathcal{K}_{n(i)} = \mathcal{N} \frac{[\mathcal{P}_{cm}]_{i}}{\mathcal{P}_{i(i)}} \; ; \tag{33}$$

продолжение 2

нагрузна, вывывающая возникновение предельного растягивающего усилия

$$\mathcal{N}_{i} = \mathcal{N} K_{n(e)} = \mathcal{N} \frac{\left[\mathcal{P}_{poem}\right]_{i}}{\mathcal{P}_{i(e)}}, \quad (39)$$

где \mathcal{N} — единичная швартошная нагрузка, действующая на пал; $\mathcal{M}_{n(\tau)}$ — коэффициент перехода для определения усилий во всех остальных опорах пала в первой стадии расчэта;

— момент прочности в наиболее нагруженной опоре;
— соответственно сжикаливя и выдергиросмі; росмі валивя нагружна, соответствущая несущей способности грунта для наиболее нагруженной опори;

 $M_{i(\tau)}$ - момент в той же опоре, полученный в результате расчета по первой стадии;

 $P_{i(t)}^{D}$ — осевое усилие в той же опоре, полученное в результате расчета по первой стадии.

В остальных опорах:

моменти определяются по формуле

$$M_{\kappa} = M_{\kappa(t)} \quad K_{n(t)} \; ; \tag{40}$$

осевые усилия - по формуле

$$P_{\kappa} = P_{\kappa(t)} \cdot K_{n(t)} , \qquad (41)$$

где \mathcal{N}_{κ} , \mathcal{P}_{κ} — максимальные изгибающий момент и осевое усилие в опоре от действия на пал нагрузки \mathcal{N}_{r} ; $\mathcal{N}_{\kappa(r)}$, $\mathcal{P}_{\kappa(r)}$ — максимальные изгибающий момент и осевое усилие в той же опоре, полученные в результате расчета

приложение 2

по первой стадии.

ПРИМЕЧАНИЕ. За единичную нагрузку принята швартовная нагрузка, равная I,0 МН.

21. Если полученная в результате расчета по первой стадии нагрузка \mathcal{N} , которая доводит максимальный изгибающий момент или осевое усилме в одной из опор до предельной величины, равна или несколько больше нормативной нагрузки \mathcal{N}^{N} , следует перейти к последующим стадиям расчета.

В случае невыполнения указанного условия элементы конструкции пала следует усилить и расчет повторить.

При этом, если нагрузка \mathcal{N}_{t} доводит до предельного значения изгибающий момент в одной из опор, то жесткость при изгибе и кручении в этой опоре в последующих стадиях расчета принимается равной нулю; если нагрузка \mathcal{N}_{t} доводит до предельного значения продольное усилие в одной из опор, то продольная жесткость этой опоры принимается равной нулю.

22. Во второй стадии расчета вновь производится расчет пала на единичную нагрузку \mathcal{N} с учетом изменений в жесткостных характеристиках элементов, указанных за л.21.

Дополнительная нагрузка $\Delta \mathcal{N}_{e}$, которая доведет максимальний изгибающий можент или осевое усилие в наиболее нагруженной опоре при второй стадии загружения пала до предельного определяется по формуле

$$\Delta N_{z} = N K_{n(z)} , \qquad (42)$$

где $\kappa_{n(2)}$ - коэффициент перехода для определения усилий во всех остальных опорах пала во второй стадии расчета определяется:

продолжение 2

в случае достижения наиболее нагруженной опорой предельного можента по формуле

$$K_{n(a)} = \frac{[M]_{:} - M_{i(a)} K_{n(a)}}{M_{i(a)}};$$
 (43)

смати я

$$K_{n(a)} = \frac{\left[\varphi_{one} \right]_i - P_{i(a)}}{P_{i(a)}}; \quad (44)$$

растимения

$$K_{n(e)} = \frac{[\phi_{poem}]_{i} - P_{i(e)} K_{n(e)}}{P_{i(e)}}, (45)$$

где $\mathcal{M}_{i(\ell)}$, $\mathcal{P}_{i(\ell)}$ - максимальный изгибающий момент и осзвое усилие в наиболее нагруженной при второй стадии загружения опоре;

 $\mathcal{M}_{i(1)}$, $\mathcal{P}_{i(1)}$ - максимальный изгибающий момент и осевое усилие в той же опоре, полученные в результате расчета по первой стадии ;

$$[M]_i$$
, $[P_{cor}]_i$, $[P_{porm}]_i$ - определени выпе.

При этом в остальных опорах:

моменты определяются по формуле

$$\mathcal{M}_{\kappa} = \mathcal{M}_{\kappa(2)} \quad \mathcal{K}_{n(2)} \quad ; \tag{46}$$

осевые усилия - по формуле

$$\mathcal{P}_{\kappa} = \mathcal{P}_{\kappa(e)} \quad \mathcal{K}_{n(e)} \quad , \tag{47}$$

где $\mathcal{M}_{\kappa(z)}$, $\mathcal{P}_{\kappa(z)}$ - жаксимальные изгибающий момент и осевсе

приложение 2

усилие в споре, полученные в результате расчета во второй стадии.

23. В каждой последующей стадии из работи конструкции исключаются опоры, косфициенты перехеда которых находятся в пределах

$$K_{n(min)} \leq K_n \leq 1,05 \, K_{n(min)}$$
. (48)

- 24. В случае, когда все опори швартовного пала вертикальные, при проведении постадийного расчета, начиная с п.20, определяется нагрузка, вызывающая возникновение в одной из опор только изгибающего можента, равного пределу прочности опори на изгиб.
- 25. Расчет ведется до тех пор, пока не будет выполнено одно из условий:

в сооружении осталась одна свая, несущая способность которой не исчерлана;

перерезивающая сила в какои-либо свае достигла предельного вначения.

IIP KADMEHME 8

АЛГОРИТМ РАСЧЕТА ОТВОЙНОГО ПАЛА

- 1. Отбойный пал рассчитывается как балка переменной местивоми с податливыми опорами. Грунт основания пала представляется в виде опор, жесткость которых в общем виде зависит от перемещения пала.
- Глубина погружения пала в грунт определяется в процессе расчета. Начальную глубину погружения рекомендуется принимать не менее 20 м.
- 3. Наг расчета ℓ (см.рис.1 настоящего Руководства) выбирает—ся как можно меньшим в зависимости от возможностей ЗВМ и принима—ется не более одного метра. Количество сечении пала T, участвующих в расчете, определяются по формуле

$$T = \frac{L_n}{\ell} , \qquad (1)$$

где L_n — длина пала; ℓ — наг расчета.

4. Приведенный можент инерции сечения пала \mathcal{J}_c опретельется по формуле

$$\mathcal{J}_{c} = \frac{\mathcal{J}_{i}L_{i} + \mathcal{J}_{2}L_{2} + \dots + \mathcal{J}_{j}L_{j}}{L_{i} + L_{2} + \dots + L_{j}} = \frac{\sum_{i=1}^{j} \mathcal{J}_{i}L_{i}}{\sum_{i=1}^{j} L_{i}} , \quad (2)$$

где \mathcal{J}_i - момент инерции сечения пала на участке \mathcal{L}_i ;
- длина участка с моментом инерции сечения \mathcal{J}_i ;
- количество участков (труб) по длине опоры пала,
участвующих в расчете;

5. Приведенный шаг расчета определяется по формуле

$$\ell_i = \frac{\frac{1}{2}L_i \, \mathcal{I}_i}{\frac{1}{2} \, \mathcal{I}_i} \quad \frac{j}{T-1} \quad , \tag{3}$$

где L_{j} , J_{j} u \dot{j} — то же, что и в формуле (2); T — количество сечений пала, участвующих в расчете, определяемое по формуле (1).

- 6. Первоначальная горизонтальная нагрузка P, прикладываемая к палу, определяется по формуле (7) п. 3.3.8. настоящего Руководства.
- 7. Жесткости грунтових опор определяются по формуле (18) п. 3.3.16. настоящего Руководства. Первоначальное значение коэффициента реакция грунта \mathcal{E}_{s} , определяемое по формуле (10) п. 3.3.10. настоящего Руководства, вычисляется при перемещении всех сечений пала, участвующих в расчете, равным 0,0001 м.
- 8. После определения реличин f_l , C_i и K_{on_l} (см.п.9), формируется матрица перехода для каждого сечения пала, участвующего в расчете, в соответствия с п. 10 настоящего Приложения.
- 9. Уравнение упругой линии пала решается з матричным методом, для чего уравнения (14) (17) п. 3.3.15. настоящего Руководства преобразуются и записываются в виде:

$$\begin{split} & \vec{M}_{i} = \vec{M}_{i-1} + C_{i} \ Q_{i-1}; \\ & Q = -\frac{f_{i} C_{i}^{2}}{2} \ \vec{K}_{on_{i}} \ \vec{M}_{i-1} + \left(1 - \frac{f_{i} C_{i}^{3}}{6} \ \vec{K}_{on_{i}}\right) Q_{i-1} + C_{i} \vec{K}_{on_{i}} \vec{\Psi}_{i} + \vec{K}_{on_{i}} \vec{X}_{i}; \\ & \vec{\Psi}_{i} = -f_{i} C_{i} \cdot \vec{M}_{i-1} - \frac{f_{i} C_{i}^{2}}{2} \ Q_{i-1} + \vec{\Psi}_{i-1}; \\ & \vec{X}_{i} = -\frac{f_{i} C_{i}^{2}}{2} \ \vec{M}_{i-1} - \frac{f_{i} C_{i}^{3}}{6} \ Q_{i-1} + C_{i} \ \vec{\Psi}_{i-1} + \vec{X}_{i-1}; \end{split}$$

иРИЛОЖЕНИЕ З (продолжение)

THE
$$\overline{M}_{i} = \frac{M_{i}}{\ell_{e}}$$
; $\overline{\varphi}_{i} = \frac{E \mathcal{J}_{e}}{\ell_{e}^{2}} \varphi_{i}$; $\overline{\mathcal{X}}_{i} = \frac{E \mathcal{J}_{e}}{\ell_{e}^{3}} \mathcal{X}_{i}$; $\overline{K}_{in_{i}} = \frac{\ell_{e}^{3}}{E \mathcal{J}_{e}} K_{on_{i}}$; $C_{i} = \frac{\ell}{\ell_{e}}$; $f_{i} = \frac{\mathcal{J}_{e}}{\mathcal{J}_{i}}$.

10. Уравнения (4) в матричной форме принимают следующий вид

$$\begin{vmatrix} \vec{M}_{i} \\ \vec{Q}_{i} \\ | \vec{\varphi}_{i} \end{vmatrix} = \begin{vmatrix} 1 & C_{i} & 0 & 0 \\ \frac{f_{i} C_{i}^{2}}{2} \vec{K}_{on_{i}} 1 - \frac{f_{i} C_{i}^{3}}{6} \vec{K}_{on_{i}} C_{i} \vec{K}_{on_{i}} \vec{K}_{on_{i}} \\ -\frac{f_{i} C_{i}}{2} - \frac{f_{i} C_{i}^{2}}{6} & 1 & 0 \\ -\frac{f_{i} C_{i}}{2} - \frac{f_{i} C_{i}^{3}}{6} & C_{i} & 1 \end{vmatrix} \begin{vmatrix} \vec{M}_{i-1} \\ \vec{Q}_{i-1} \\ \vec{\varphi}_{i-1} \\ \vec{x}_{l-1} \end{vmatrix}$$
(5)

или сокращенно

$$U_i = \mathcal{X}_i \cdot U_{i-i}, \qquad (6)$$

где \mathcal{U}_i --матрица-столбец для \dot{t} -го сечения пала; \mathcal{X}_i -- квадратная натрица перехода четвертого порядка от \dot{t} -- му;

 $\mathcal{U}_{i ext{-}i}$ - матрица-столбец для $i ext{-}i$ сече чл пала.

11. Матрица-столбец 11, для подоны пала записнвается в виде

ПРИЛОЖЕНИЕ З (продолжение)

$$U_{\bullet} = \mathcal{X}_{n} \quad \begin{vmatrix} 0 \\ 0 \\ \overline{V}_{o} \\ \overline{\mathcal{X}}_{o} \end{vmatrix}$$
 (7)

так как изгибающий момент и перерезняающая сила в этом сечении разки нужо.

12. Иатрицы перемноваются по формуне (6) последовательно от подошен до верха папа и в точке приложения силы P получают

$$U_6 = \mathcal{Z}_k \ U_o \quad , \tag{8}$$

или в развернутом виде

$$\begin{vmatrix} \vec{M} \\ \vec{Q}_{\delta} \\ \vec{\varphi}_{\delta} \\ \vec{x}_{\delta} \end{vmatrix} = \mathcal{Z}_{\delta} \begin{vmatrix} 0 \\ 0 \\ \vec{\varphi}_{\delta} \\ \vec{x}_{\delta} \end{vmatrix}$$
(9)

13. Величин $\overline{q}_{_0}$ и $\overline{X}_{_0}$ определяются из решения системи уравнения, получаемых после перемножения в правой части выражения (9),

$$\begin{array}{c}
\widetilde{M}_{g} = \mathcal{Z}_{1,3} \widetilde{\Psi}_{o} + \mathcal{Z}_{1,4} \widetilde{X} \\
Q_{g} = \mathcal{Z}_{2,3} \widetilde{\Psi}_{o} + \mathcal{Z}_{2,4} \widetilde{X}_{o}
\end{array}$$
(10)

The $\mathcal{Z}_{i,j}$, $\mathcal{Z}_{i,j}$, $\mathcal{Z}_{i,j}$ u $\mathcal{Z}_{i,j}$ showever material $\mathcal{Z}_{i,j}$.

Для верха пала в точке приложения сили P изгибающий момент равен нулю, а перерезывающая сила равна P. Поэтому система уравнений (10) окончательно имеет вил

$$\begin{array}{c}
0 = \mathcal{X}_{13} \overline{\mathcal{G}}_{\sigma} + \mathcal{X}_{14} \overline{\mathcal{X}}_{\bullet} \\
\rho = \mathcal{X}_{23} \overline{\mathcal{G}}_{\sigma} + \mathcal{X}_{24} \overline{\mathcal{X}}_{\sigma}
\end{array}$$
(11)

14. С известными величинами $\overline{\mathcal{G}}_0$ и $\overline{\mathcal{X}}_0$, определенными в п.13, матрицы последовательно перемножаются по формуле (6) от подошвы до верха пала и получают значения \overline{M}_i , \overline{Q}_i , $\overline{\mathcal{G}}_i$ и $\overline{\mathcal{X}}_i$ для каждого сечения пала.

15. Деиствительные перемещения в наждом сечении пала определяются по формуле

$$x_i = \frac{\bar{x}_i - \ell_c^3}{E J_c^2} \quad , \tag{12}$$

где

 $oldsymbol{ar{x}}_i$ – определено в п.9;

 ℓ_{o} - приведенный шаг, определяемый по формуле (3) п.5;

Е - модуль упругости стали;

 $\mathfrak{I}_{\mathfrak{C}}$ — приведенный момент инерции сечения пала, определявный по формуле (2) п.4.

16. Итерационный процесс по определению перемещений \mathcal{X}_i продолжается до удовлетворения критерия сходимости: величини $\mathcal{X}_{i \; noch}$, полученные на последней итерации, не должны отличаться от значений $\mathcal{X}_{i \; npeg}$ на предылащей итерации в пределах необходимой точности $\|\mathcal{E}_1\| = (0.5 \div 3)\%$.

При этом условие сходимости определяется следующим неравенством

ПРИЛОЖЕНИЕ З (продолжение)

$$\frac{\sum_{i=1}^{T_{io}} \left(\left| X_{i \text{ noc.n.}} \right| - \left| X_{i \text{ npeg.}} \right| \right)}{\sum_{i=1}^{T_{io}} X_{i \text{ noc.n.}}} \times 100 \leq \left| \mathcal{E}_{i} \right|,$$
(13)

где \mathcal{T}_{ip} - количество сечений части пала, погруженной в грунт; $X_{i,noc,n}$ перемещение, определенное на последующей итерации; $X_{i,noe,n}$ перемещение, определенное на предыдущей итерации.

17. При выполнении требований п.16 глубина погружения пала в грунт увеличивается на шаг расчета ℓ и весь процесс расчета повторяется, начиная с п.3, пока не будет найдена вторая нулевая точка упругой линии пала.

Нахождение второй нумевой точки производится в два этапа. На первом этапа определяется глуовна погружения, начимая с которой ее дальнейшее увеличение не оказывает влияние на перемещение пала в точке приложения сили ρ . В кичестве критерия ахожимости принистикательного следующее неравенство

$$\frac{X_{o\,nocn.} - X_{o\,npeg}}{X_{o\,nocn.}} \times 100 \le \left| \mathcal{E}_{e} \right| , \qquad (14)$$

где $X_{a\,noca}$ и $X_{a\,npeg}$ — соответственно перемещение в точке приложения силы ρ при последующей в препытущей глубине погружения пала в грунт.

Величину $|\mathcal{E}_2|$ рекомендуется принимать равной 0,5%.

На втором этапе при цальнейшем увеличении глубини погружения производится поиск еторой точки перехода изогнутой сси нала через

TIPILIOXISHUS 3 (прополжение)

ноль. За критерий перехода принимается изменение знака перемещений с минуса на плюс. Глубина, соответствующая этой смене знака, принимается за расчетную глубину погружения.

ПРИМЕЧАНИЕ. Всли начальная глубина погружения пала в групт $h_{\it noip}$, определенная в п.2, окажется больше глубины, на которой находится вторая нулевая точка изогнутой оси, то в процессе расчета производится соответствующая ее корректировка.

18. При выполнении требований п. 17 определяется расчетная сила по формуле

$$P_{p} = P \frac{M_{max}}{M} , \qquad (15)$$

где

 первоначальная сила, определяемая по формуле (6) п.3.3.8 настоящего Руководства;

 \mathcal{M}_{max} - максимальный изгибающий момент в нале от первоначальной силы Р при расчетной глубине погружения

— несущая спопобность сечения пала на цействие изгибающего момента, определяемая по формуле (8) п.3.3.8 настоящего Руковойства.

Расчетная сила $P_{
ho}$ последовательно корректируется до тех пор, пока не будет удовлетворен критерий сходимости

$$\frac{M - |M_{max p}|}{M} \times 100 \le |\mathcal{E}_{\mathfrak{z}}|, \quad (16)$$

rge

— определено внше;

 $\mathcal{M}_{max\,
ho^-}$ максимальный изгибакщий момент в пале от расчетной силь $P_{
ho}$ на данном этапе ее корректировки.

Величину [Е, рекоменцуется принимать равной 0,5%.

ПРИЛОЖЕНИЕ 3 (продолжение)

19. Ступени расчетной нагрузки P_{cm} определяются по формуле

$$P_{cm} = P_{p} \frac{\mathcal{N}_{cm}}{\mathcal{K}_{cm}} , \qquad (17)$$

где P_p — расчетная сила, определяемая по формуле (15) п.18; \mathcal{N}_{cm} — номер ступени; \mathcal{K}_{cm} — количество ступеней.

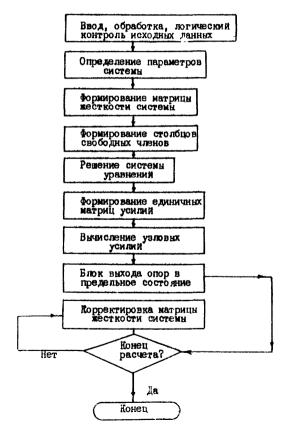
- 20. Для каждой ступени расчетной нагрузки при расчетной глубине погружения производится процесс вычислений по пп.7 15 и определяется энергопоглощающая способность пала по формуле (20) п.S.3.20 настоящего Руководства.
- 21. Для последней ступени расчетной нагрузки определяются все выходные данные. Действительные значения изгибающих моментов M_t и углов поворота \mathcal{Y}_t определяются по формулам:

$$M_i = \overline{M}_i \quad \ell_c; \tag{18}$$

$$\varphi_{i} = \overline{\varphi}_{i} \quad \frac{\ell_{c}}{E \mathcal{J}_{c}} \quad , \tag{19}$$

где M_i и \mathcal{G}_i — определены в пп.9 и 10; ℓ_c — приведенный шаг, определженый по формуле (3) п.5;

Е - модуль упругости стали;


 \mathcal{J}_c - приведенный момент инершии сечения пала, определяемый по формуле (2) п.4.

Ревиция грунта определяется по формуле (11) п.З.З.11 настоящего Руководства.

ПРИЛОЖЕНИЕ 4 (справочное)

ПРОГРАММА РАСЧЕТА ШВАРТОВНЫХ ПАЛОВ НА ЯЗЫКЕ PLДЛЯ ЭВИ ТИПА ЕС (PREMIR)

1. Brok-oxema k nporpamme PREMIR

ПРИЛОМЕНИЕ 4 (продолжение)

2. Состав информации

Исходная информация и расчету состоит из следующих разделов:

информация для оформления титульного листа; информация о геометрических размерах сооружения и жестностных характеристиках сооружения и основания (инвариантная часть);

информация о нагрузках;

информация о несущих способностях исследуемых элементов. Вся информация заполняется на бланках.

2.2. Информация, необходимая для оформления титупъного листа (табл.1):

₽ объекта:

наименование объекта;

тегов хишенипспив , дип хинтонипод импимеф

2.3. Информация к инвариантной части состоит из следующих таблии:

таблица 2- Признаки системи;

таблица 3 - Топология системы;

таблица 4 - Граничные условия:

таблица 5 - Характеристика типов конечных элементов;

таблица 6 - Лесткости элементов конструкции и основания, геометрические размерн сечений;

таблица 7 - Координати узлов.

2.4. Информация о загружениях состоит из таблиц:

таблица 8 - Описатели загружений;

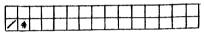
таблица 9 - Нагрузки;

таблица 10- Величины нагрузск.

ПРИМОЖЕНИЕ 4 (продолжение)

- 2.5. Информация о несущих способностих расчетных элементов представлена в таблице II Таблица несущих способностей элементов.
- 3. Общие принципы подготовки исходных данных на бланках для перфорации
- 3.1. Все исходные данные подготавливаются на специальных бланках. Бланки имеют форму таблиц с разбивкой по графам.
 - Число строчек бланка соответствует числу карт.

 3.2. Признаком конца таблицы является строка
- 3.3. При отсутствии какой-любо таблици вместо нее старится карта 🔀
 - 4. Бланки исходных данных к программе PREMIR
 - 4. I. Таблица I. Титульный лист


Номер с	бъе	KT9;		ma	x	٨	7	-	. 9	99	9							
/*																		_
Названг												CKC	IJЬ	KO	CI	ניםי	ĸ,	
записы	ает	CH C	Л	00,	i I	'pa	фя	CT	po	Ю								
/*			L		L	L_	L	_		L	_	L.	L.					
Фамилия	на	чалы	HNK	a	TTC	ЮЛ	8				İ	L	L.	_				
/ *			<u> </u>			<u>L</u> .	L_			L	L_	_	ļ.,					
Pama.Tr.s	יין ו	1DHO	ro	CIT	Ш	ал	HC'	ra		L	L_		L.		L_	1		
/ *	\Box				L	L	L			L_				L.,				
Фамилия	py	COPO	THI	en:	I	, ba	1111	1		<u>L_</u>	L	L	L					

приложение 4 (продолжение)

1	*		T			T	T	Т	Π									_
	\sqcap	\$8300	RM	про	вер	AOI	perc	,						L	L	L		L
/	*	\top	П	T			$oldsymbol{\mathbb{T}}$	\perp						<u>_</u>	_	L		_
	1													!	1			
		фамил	M S	OTB	BIC	T BE	HHC	PO	KC	101	ии	TÇ	LL	├	-	-	-	-
	*	Day (K)	RM	OTB	BTC	rBe	эннс	ro	MCI	101	ни	TE						

ПРИМЕЧАНИЕ. Одна строка — одна карта. После номера объекта, карт с названием, каждой фамилии — карта с [∕#]

4.2. Таблица 2. Привнак системн

ПРИМЕЧАНИЕ. Первая строка — признак системы.

— система общего вида (шесть степеней свободы в увле).

4.2. Информация об элементах

Стержневые элементы описываются тремя таблицами: 3,5,6.

4.1.1. Таблица 3. Топология системы

-		H	оже	p	Ст	Стержень								
	Экак	T	ина		нон Нои	ia. Ia.iia	(конпа) Азив Номер							
	1	2	3	4	5	6	7	8	9	10				
Ì														
I														

ПРИОБЧАКИЯ: 1. Пример заполнения таблицы

-001012016 - расчетний

стержень 1-го типа, начало стержня — 12 узел, конец — 16.

ПРИЛОЖЕНИЕ 4 (продолжение)

- Энак " " элемент расчетный. Расчетными могут бить только головы свай. Под головой свам понимается участок свам длиной не менее 1 м, приминающий к верхнему строению и не находящий ся в грунте.
- 3. Номер типа номер строки в таблице 5.
- 4. Последняя строка таблицы 🔼 🛊

Таблица 4. Граничные условия

ŀ	ome	p	K	Код закрепления									
۲	ane,	,	\bar{x}	x 4 2 4 4									
1	2	3	4	5	6	7	8	9					

- ПРИМЕЧАНИЯ: 1. В порядке возрастания номеров записываются все узлы с закреплениями, отличными от стандартных. Последние задаются программно в зависимости от признака системы в табл.2.
 - 2. В графах 4-9 записывается признак наличия связи: "1" при наличии связи;
 - " ϕ " -при отсутствии связи.
 - 3. Последняя строка таблици 🖊 🛊
- 4.2.2. Таблица 5. Характеристика типов конечных элементов

Ти коне элем	TOHP	T (me		юи е .6	T (EC		KŅ B	C P	номе грок вол. взме опер	и в 6 р ечн.	нфоно Опоры
1	2	3	4	5	6	7	8	9	10	11	12
								_			

ПРИЛОЖЕНИЕ 4 (продолжение)

- примечания: 1. В графи 1-2 записывается Ø 1, если стержень обычный и Ø 2, если стержень на упругом основании.
 - Графи 3-5 порядковый номер строки в табл.6.
 В этой строке расположено первое из группы чисел, описывающих жесткостные характеристики конечного элемента.
 - Графи 6-8 порядковый номер строки в табл.6. В этой строке расположено первое из группы чисел, описывающих жесткостные характеристики упругого основания.
 - Графи 9-11 порядковый номер строки в табл.ô. В этой строке расположено первое из группы чисел, описывающих геометрические размеры поперечного сечения элемента.
 - Графа 12 признак контакта стержня с упругим основанием:
 - 2 стержень прямоугольного поперечного сечения погружен в упругое основание;
 - 3 стерженъ круглого поперечного сечения погружен в упругое основание.
 - 6. Последняя строка табл.5 🔼 *
- 4.2.3. Таблица 6. Жесткости, геометрические размеры сечения.
- 4.2.3.1. В таблицу сначала записываются неодинаковые группы жесткостей элементов. При этом каждому расчетному элементу соответствует своя группа жесткостей.

В группу месткостей, описывающих стержень, входят следующие характеристики сечения:

 $E\mathcal{I}_{x_t}$ - изгибная жесткость относительно оси \mathcal{X}_t ;

 \mathcal{EI}_{x} - изгибная жесткость относительно оси \mathcal{Z}_{x} :

 $G\mathcal{J}_{k_0}$ - жесткость на кручение;

EF - жесткость на растяжение - сжатие;

угол чистого вращения (принимается равным 0).

4.2.3.2. Затем записываются все неодинаковые группы жесткостей упругого основания для элементов на упругом основании.

ПРИЛОЖЕНИЕ 4 (продолжение)

Каждая группа состоит из трех чисел:

- М_т коэффициент жесткости основания при равномерном сжатии;
- Н_е коэффициент жесткости основания в направлении продольной оси стержия;
- К_g коэффициент жесткости основания при неравномерном скатии для стержней прямоугольного сечения, либо коэффициент жесткости на сдвиг стержней круглого поперечного сечения.
- 4.2.3.3. Для стержней на упругом основании для каждого типа поперечного сечения задаются 2 его размера: первым задаются размер вдоль оси \mathcal{X}_r , вторым вдоль оси \mathcal{X}_r .
- 4.2.3.4. Число ваписывается с первой графи. Запятая занимает отдельную повицию.
 - 4.2.3.5. Последняя строка таблицы /*
 - 4.2.4. Таблица 7. Координати увлов.
- 4.2.4.1. Записываются сначала все абсиисси, потом ординаты, ватем аппликаты увлов системы в порядке возрастания их номеров в общей системе координат.
- 4.2.4.2. Число записывается с первой графы. Форма записи с запятой. Присутствие запятой обязательно.
 - 4.2.4.3. Последняя строка таблицы 🔃 🛊
 - 4.2.5. Таблица 8. Описатели загружения.
- 4.2.5.1. Строка заполняется с первой графы. Одна строка число нагрузок в загружении.
 - 4.2.5.2. Число строк соответствует числу загружений.
 - 4.2.5.3. Конец таблицы строка 📝 *

приложение 4 (продолжение)

4.2.6. Таблица 9. Нагрузки

	Н	оме эла	p	Направление нагрузки	H CT Ta	о м е рок бл.	р и в 10	Номер вида
I	1	2	3	4	5	6	7	8
Į								

- ПРИМЕЧАНИЯ: 1. Графы 1-3 номер узла, к которому приложена нагрузка.
 - 2. Графа 4 направление действия нагрузки:
 - 1 сила направлена вдоль оси \mathcal{X} (\mathcal{X}_{ϵ}):
 - 2 сила направлена вдоль оси \mathcal{Y} (\mathcal{Y}_{i}):
 - 3 сила направлена вдоль оси 🗜 (🐔)
 - 4 момент относительно оси x(x):
 - 5 момент относительно оси \mathcal{Y} (\mathcal{Y}_{\star})
 - 6 номент относительно оси \mathcal{Z} (\mathcal{Z} ,).
 - 3. Графи 5-7 порядковий номер строки в табл. 10.
 - 4. Графа 8 номер вида. Рассматривается только узловая нагрузка, которой присважвается признак 1.
 - 5. Последняя строка таблицы 🖊 *
- 4.2.7. Таблица 10. Величины нагрузок
- 4.2.7.1. В таблице записываются все неодинаковые величины нагрузок. При этом проверяется соответствие с записыю в графах 5-7 таблини 9.
- 4.2.7.2. Положительный знак нагрузки означает, что направление действия силы совпадает с соответствующим направлением общей или местной системы координат, а сосредоточенный момент действует

ПРИЛОВЕНИЕ 4 (продолжение)

против часовой стрелки, если смотреть с положительного направле-

- 4.2.7.3. Число валисывается в форме "с запятой". Присутотвие запятой обязательно.
 - 4.2.7.4. Последняя строка табл. 10 🖊 🛊
 - 4.2.8. Таблица 11. Несущие способности элементов
- 4.2.8.1. В таблице записываются группы величин несущих способностей опор пала в следующей послежовательности:
 - ф несущая способность опоры по грунту при выдергивании;
 - л несущая способность опоры по грунту при сжатии;
 - Q несущая способность опоры по прочности материала на действие поперечной силы;
 - м несущая способность опоры по прочности материала на изгиб.
- Использование признака повторении при кодировании информации (компактная форма записи)
 - 5.1. Если рассматриваемая система регулярна, то заполняемая информация может быть вначительно сокращена за счет признаков повторений, применяемых ко всем таблицам, кроме табл.1 и 2.
 - 5.2. Для применения признака повторений 1-го типа необходимо, чтобы повторяемые строки таблицы располагались непосредственно перед формируемыми.

Эта форма записи для таблиц 3,4,5,8,9 имеет вид

ПРИЛОЖЕНИЕ 4 (продолжение)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	8							8				8				8			
C	H a		A,			Re		H a		R,		H a		R,		H		R,	
	K							ĸ				ĸ				K			

гда в первой графе записывается буква "с" - признак повторений первого типа;

знак " — " во 2-ой графе означает, что у группи повторяемых строк знак меняется на противоположний;

 R_{\star} — число повторяемых строк таблици;

д - числю щиклюв повторений;

 - шаг повторении. Шаг, равнии шулю, не записывается, если справа от него нет значащих шагов. Каждии шаг задается со своим знаком.

Признак повторений 1-го типа для таблиц 6,7,10,11 имеет следующий вид

1.	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	3							8						
C	H		R,			R_{2} $\begin{bmatrix} \mathbf{H} \\ \mathbf{a} \end{bmatrix}$ R_{3}								
	ĸ							ĸ						

5.3. Признак повторений 2-го типа используется, когда вознижает необходимость повторения группы строк, расположенных в

приложение 4 (продолжение)

таблице не подряд, а следующих с определенным шагом и не находящихся непосредственно перед формируемыми строками.

Для таблиц 3,4,5,8,9 ста форма записи имеет следующий вид

1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21.	22	23	24	25	26
D	8 H & K	Ą	? 4		R	•		R	F		A		8 H 8 K		R,		8 H & K		R,		8 H 8.		R,	

где D — признак повторении 2-го типа;

Я, - шаг повторяемых строк;

 R_{s} , R_{c} — первый и последний (включительно) номера повторив-

 R_{2} , R_{3} — обозначени в п.5.2.

Признак повторении 2-го типа для таблиц 6,7,10,11 имеет следующий вид

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	25
	8													8							
2	H		R		1	R			R			A.		H			1	?			
	8		4	í		ě	•		5	'		.8		a				3			
	к													ĸ							

где
$$R_g$$
, R_g , R_g , R_g , R_g — обозначени выше; знак " — " во 2-ои графе означает, что у группы повторяв-

- 5.4. Признаки повторений могут следовать один за другиж.
- 5.5. Примеры использования признаков повторений.

ПРИЛОЖЕНИЕ 4 (продолжение)

5.5.1. Информация:

+ 002007001

+001002 + 001 +002

Расимпровывается следующим образом

+ 002007001

+ 003009001

+ 004011001

Любой маг повторения может быть отрицательным.

Например,

+007017001

+001002 + 001 - 002 + 001

Расиифровывается следующим образом

+007017001

+008015002

+009013003

5.5.2. Пример признака повторений 1-го типа для таблиц 6,7,10,11

+ 5.

+001002 + 1

- 002001

Расинфровывает ся

+ 5,

+ 6.

+7.

- 6.

- 7,

ПРИЛОБЕНИЕ 4 (продолжение)

5.5.3. Пример признака повторений второго типа. Пусть с 50-ой строки необходимо повторить три раза строим таблицы, начиная с двадцатой, по двадцать вторую с шагом два по номерам строи и с шагом два по величинам элементов.

Эшни сана информация

20 : + 005 013 002 21 : + 001 006 002 22 : + 006 014 002

Применаем привнак повтерения 2-го типа

+ 002 003 020 022 + 002 + 002

Получаемая информация будет выглядеть так

50 : + 007 015 002 51 : + 008 016 002 52 : + 009 017 002 53 : + 010 018 002 54 : + 011 019 002 55 : 012 020 002

5.5.4. При следовании одного признака повторений за другим сначала будет применен первый признак повторений, а затем к развернутой информации будет применен второй признак повторений.

6. Решение задачи на ЭВМ

- 6.1. Подготовка системы к эксплуатации
- 6.1.1. Для выполнения счета необходимо:
- 128 жбайт основной памяти; два дисковода с номерами x 190 , x 191 x;

продолжение 4

одно устройство печати;

одна пишущая машинка,

На дисководе с номером \mathcal{X} 190 гарожен быть установлен пакет дисков, на котором находится \mathcal{DOC} \mathcal{EC} (версия 1.3) и комплекс \mathcal{PREMIR} . На дисководе \mathcal{X} 191 гарожен находиться рабочий пакет лисков.

6.1.2. Рабочий пакет дисков необходимо инициализировать и форматизировать.

Залание для инициализации рабочего пакета дисков

// _ JOB _

/ _ ASSGN _ SYS \$ \$ \$ \$ p, x 191'

/ _ EXEC _ INTD

/ _ UID _ IR, C1

/ _ VTOC _ STANDARD

VOL 1 _ OMITR 1

/L END

18

Задание на формативацию

```
I .. JOB _ FORMAT
1 _ ASSGN _ SYS $$ 5, x 191'
1 _ DLBL _ UDUT, 'MA' 76/365
11 _ EXTENT _ SYSQ $ 5 OMITR1 1 $ 27 $, 173$
1 _ EXEC _ CLRDSK
11 UCL - B = (K= P. D = 36 PP) C'1, ON
// _ END
I _ JOB _ FORMAT
1 _ ASSGN _ SYS Ø Ø 5 x '191'
IL DLBL - UOUT, 'KARTE2, 76/365
1 _ EXTENT _ SYS $ $ 5. OMITA1 1. $ 9$ 7$
I _ EXEC _ CLADSK
1 . UCL . B = (K=P. D=599). C'1; ON
/ L END
/ _ JOB _ FORMAT
/ _ ASSGN _ SYSØØ5. x'191'
I _ DLBL _ UOUT, 'KARTE1' 76/365
1 _ EXTENT _ SYS $$ $ 001TA1, 1, $, 2$, 7$
I - EXEC - CLADSK
/ _ UCL _ B=(K=$ D=15$$), C'1. ON
// .. FND
```

6.2. Выполнение счета на ЭВИ

Для выполнения счета необходимо установить ревидентный пакет дисков на НИД с адресои \mathcal{X} 190°, рабочий пакет — на НИД с едресои \mathcal{X} 191°. Выполнить процедуру первоначальной загружим и установить пакет ПК на устройство ввода. Ввести управляющие кар ты и исходдую информацию в соответствии с указаниями п.6.3.

Признак нормального завершения работы — сообщение на ПМ "Режим РАБОТЫ?" (при отсутствии исходных данных на устройстве ввода ПК).

Действия оператора – нажеть кнопку "КТ". На ПМ будет выдано сообщение " INTERV $_$ REQ $_$ $SYSRDR\phi\phi$ C."

Побое другое завершение работы считается еварийным. Для продолжения работы после аварийного прерывания необходимо установить соответствующий пакет ПК на устройство ввод в соответствии с указани мии п.6.3.

```
6.3. Инструкция оператору
```

```
6.3.1. Поиготовить и установить на ввои некет ИК
I - SOA .. FMTRAT
II - NOLOG
|| ~ ASSGN ~ SYS $$ $$ $$ 2.21'
ÏI → EXEC → EMTRVTL

    Исходиме данные для титульного листа объекта >>

# _ DLBL _ I JSYSIN. MEST' Ø
I - EXTENT _ SYSRDR. OMITR1,8,,16 $ 50,4
∟ ASSGN ∟ SYSRDR, X 191°
      Исходине панные пля расчета объекта ж >>
*
180
    6.3.2. В случае аварийного прерывания работы комплекса кля
продолжения работи необходимо установить следующий пакет ПК:
IL JOB L EMTRAT
II - NOLOG
и — ASSGN — SYSфф5, X' 191'
I L EXEC L HELP
IL DLBL LISSYSIN' MEST! $
II - EXTENT SYSRDR, OMITR 1,8, 16Φ, 5Φ4
 ு ASSGN ு SYSRDR x' 191'
18
```

ПРИЛОЖЕНИЕ 4 (продолжение)

- 7. Чтение результатов расчета
- 7. I. В результате расчета на каждой стадии на печать выдается следующая неформация:

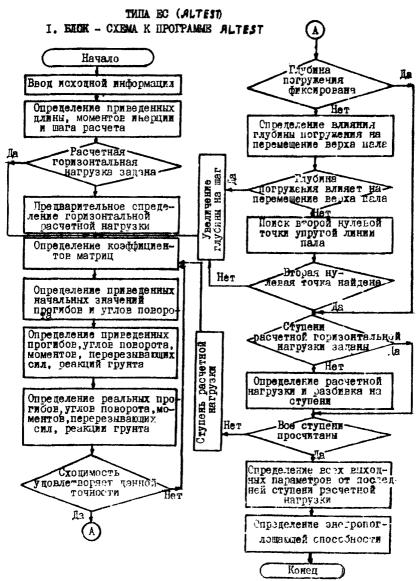
номер стадии;

суммарная нагрузка на швартовный пал, которая вызывает в одной кли несколькых опорах предельное усилие;

ножер адемента, в котором возникло предельное усилие;

суммарное максимальное перемещение конструкции в горизонтальной плоскости и номер соответствующего узла.

7.2. При ожончании расчета по достижению предельного значения перерезывающей силы на печать выдаются:


номер стадии;

сообщение о том, что предельного значения достигла перерезн-

но мер здомента, в котором возникла предельная перерезивающая сида;

коэффициент $K = \frac{Q_i}{\sqrt{Q_i}}$.

ме ещ *1*9 яже и вопал и выбрания программа расчета отбойных палов на наыкв *Р*1 для эвм

ПРИ ЛОЖЕНИЕ 5 (продолжение)

2. MCXOAHLE JAHHUE

Задание на расчет гибкого пала должно содержать:

рясчетную схему опоры пала с координатами (начало координат
принимается в точке приложения горизонтальной сили Р);

геометрические характеристики сечений опоры по длине:

для кольцевого сечения - наружный диаметр од и толжину
стенки t ;

для некольцевого сечения — ширину d_{n} , площадь F , номент инерции I и мемент сопротивления W ;

для изменявной по длине опоры формы сечения геометрические характеристики принимаются как для некольцевого сечения;

прочностные характеристики материала опорн пала — модуль упругости Е и расчетные сопротивления изгибу R и срезу R_{cp} с учетом коэффициентов услевий работы и надежности;

характеристики грунта каждого слоя с указанием координати "у" верхней границы слоя — параметры K, K_a , α , β ;

прочие необходиные данные в соответствии с бланком исходных данных, заполнаемие закажимом.

ж) Программа ALTEST позноляет рассчитывать пал с опорой произрохьного померечного сечения, на заданные нагрузку и глубину погружения в грунт.

ПРИЛОЖЕНИЕ 5 (продолжение)

з. Бланки исходных данных

(заполняются заказчиком)

Условное обозна- чение	Идентифи - катор	Размер- ность	Наименование нимири ее	Величина
	NB1	_	количество вариантов	
$\mathbf{\epsilon}_{i}$	EBS1	_	точность итерационного процесса	
$\mathcal{E}_{\mathbf{z}}u\mathcal{E}_{\mathbf{z}}$	EBS2	_	точность определения вижимия глубин погру- жения на перемещение наг- рузки расчетной наг- рузки	
ø	ALF	_	признак фиксирования З	
Ket	ST	_	количество ступеней горизонтальной наг- рузки	
j ep	NG	ед.	количество слоев грунта	
$\boldsymbol{\ell}$	SH	и	mar pacuera	
K _m	KF		коэффициент начальной глубини: $K_m = \frac{Z}{C}$ ($Z = Z_{\mu\nu}$ при $\alpha = \emptyset$, $Z = Z_{\mu\nu}$ при $\alpha = 0$), где $Z_{\mu\nu}$ при $\alpha = 0$, ная глубина принимаемая равной 20 м; Z_{ν} — фиксированная глубина погружения.	
Н	H	×	плечо горизонтальной силы	

ПРИЛОЖЕНИЕ 5 (продолжение)

условное обозна- чение	И дентифи — катор	Размер- ность	енирипев Наирипев	Величина
ВЅН	вѕн		признак задания геометри- ческих характеристик по- перечных сечений участков опоры пала по длине: BSH = \$\phi\$ — сечения кольцевые;	
			BSH = 1 - сечения не кольцевые. В этом случае моменты инершии, моменты сопротивления и площади поперечных сечений задаются.	
RPR	RPR	-	признак задания нагрузки и ее ступеней:	
			RPR = Ф - нагрузка не задана;	
İ			RPR = 1 — нагрузиа задана с разбивкой ее на ступени	
E	£	к∏а	модуль упругости материа- ла опоры	
Ĵър	NT	ед.	количество участков опоры по длине пала с различны- ми геометрическими харак- теристиками	

Массив характеристик участков опоры пала по длине

			· -
y 70	SECH(1,MT)	M	координата изменения толии- ны стенки
d,	SECH(2,NT)	N	наружный диаметр (ширина) опоры пала
t unu I	Sech(3,NT)	М	при $BSH = \phi$ - толщина стенок при $BSH = 1$ - момент инерции сечений
R	SECH(4,NT)	к∏а	расчетное сопротивление изгибу материала опоры пала с учетом коэй/мициентов условий работн то належности Ки

ПРИЛОЖЕНИЕ **5** (продолжение)

Условное обозна- чение	Идентифи- катор	Размер- ность	Наименование величины	Величина
Rep	SECH(5,AT)	кПа	расчетное сопротивление срезу материала опоры пала с учетом коэффициентов условий работы пл и надежности K_N	
ITER	ITER	-	признак промежуточной печа- ти таблицы 3 результатов расчета	
			ITER = 1 — таблица печа— тается ITER = 0 — таблица не печатается	
ZKN	ZKN	~	признак зависимости реакции грунта от перемещения пала: $ZKN = 1$ — зависимость линейная, т.е. параметр $\delta = 1$;	
			$ZKN = \phi$ — зависимость не- линейная, т.е. параметр $\delta = 1$.]

Нассив характеристик грунта

			photos tpjiit
y_{φ}	PDT(1,NG)	ж	координата верхней границы слоев грунта
K,	PDT(2,NG)	кН/м ⁴	параметр, характеризующий де- формативные свойства грунта на границе слоев и определя- ем и по формуле (13) настоя- щего Руководства
K	PDT(3,NG)	кн/м ³	параметр, характеризующий де- формативные свойства грунта каждого споя
a	PDT(4,NG)		показатель степени, характе- ризующий изменение реакции грунта с глубиной
в	PDT(5,NG)		показатель степени, характе- ризующий изменение реакции грунта от перемещения

приложение 5

(продолжение)

Условное обозна- чение	Идентифи катор	Размер- ность	Наименование величины	Величина
	Хассивы,	зави сящ	ие от признаков <i>BSH</i> и <i>PRP</i>	
	WF(2,√T)	-	массив моментов сопротивления и площадей сечения участков опоры папа. Заполняется при ВЗН = 1.	
W	WF(1,NT)	м ⁴	момент сопротивления сечения участков в опоры пала	
F	WF(1,NT) WF(2,NT) MPG(ST)	x ²	площадь сечения участков опоры пала	
Pem	MPG (ST)	_	ступени нагрузки. Заполняется при РКР ≈ 1.	

(продолжение)

Бланки исходинх данных для оператора

Исходные данные на бланки для оператора занесятся с бланка исходних данных, заполыяемоге заказчиком, с первой по восьмидесятую позиции и отделяются друг от друга запятой.

Первый набор

NB1	

Второй набор

ϵ_{i}	$\mathcal{E}_{\mathbf{z}}$	d	Кст	d ap	ť	Kzn	Н	BSH	PRP

Третии набор

E	J тр

Четвертии набор

Массив карактеристик участков епори напа по длине

$y_{\tau \rho}$				
$\mathcal{A}_{\scriptscriptstyle{M}}$			 	
t			 -	
R				
R_{cp}				

ПРИЛОЖЕНИЕ **5** (продолжение)

Пятый	набер
-------	-------

ITER	ZKN

Шестой набор

Нассив характеристик грунта

y _{ep}				
K,				
K				
α				
8				

Седьной набор (если BSH = 1)

W				
F				

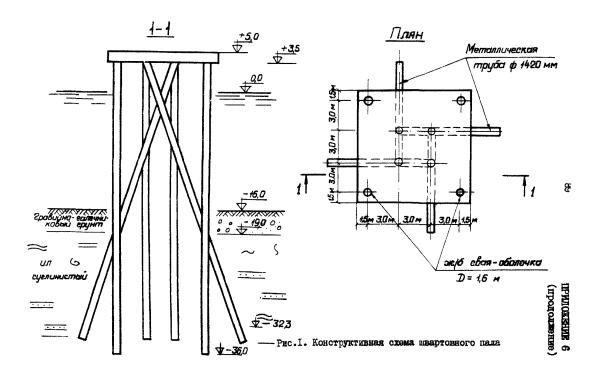
Восьмой набор (если РКР = 1)

•		 	 			
- 1			i i		1	1
1	ν		i i	ŀ	1	
ı	4 cm					

ПРИ ЛОЖЕНИЕ 5 (предолжение)

```
В результате расчета на печать выводится следующее.
   1. Входине данине:
   ступени нагрузок P_{em} , если они задани (RPR = 1):
   ваданная глубина погружения h_{max}(\mathcal{Z}_{max}), всли она фиксирова-
   ко эффициент начальной глубины К., (КГ);
   количество ступеней нагрузки K_{cr} (ST);
   mar pacuera & (SH);
   модуль упругости Е:
   плечо склы Р-Н :
   ваданине точности \mathcal{E}_1, \mathcal{E}_2 u \mathcal{E}_3 (EBS1, EBS2) :
   характеристики грунта (табл.1);
   2. Результати расчета:
   таблица 3, если требуется ее вывод на печать (ITER = 1).
(координата сечения пала ниже дна " \mathcal G ", перемещение \mathcal X_u , угол
поворота arphi_{arphi} , изгибающий момент M_{arphi} , перерезывающая сила
реакция грунта Q_{m{y}} , расчетный коэффициент реакции грунта
  \mathsf{E}_{\mathsf{su}} ;
   расчетная глубина погружения h_{max}; (ZP);
   ступени нагрузки и соответствующие им перемещения в точке
приложения силы:
   энергопоглощающая способность Е (55);
   внутренние усилия (табл.4).
```

ПРИЛОЖЕНИЕ 6 (справочное)


ПРИМЕР РАСЧЕТА ШВАРТОВНОГО ПАЛА

- 1. УСТАНОВЛЕНИЕ КОМПОНОВОЧНОЙ СХЕМЫ СООРУЖЕНИЯ
- 1.1. Исходине данные
- 1.1.1. Глубина у причала 19,5 м, етметка кордона +5,0 м. Пал предназначен для вакрепления кормового ввартовного конца. Технологического оборудования на пале мет.
- 1.1.2. Грунт основания с отм.-19,5 до отм.-22,5 гравийно-галечниковни с коэффициентом пропорциональности упругих своиств равным $26.0\,$ МН/м 4 ; ниве отметки -22,5 ил суглинистый с коэффициентом пропорциональности упругих своиств равным 2.0 МН/м 4 .
 - 1.2. Конструктивная схема (рис.1)
- 1.2.1. Для расчета принимается швартовный пал, основание которого выполнено на восьми опор.

Вертикальные оперы принимаются из предварительно напряженных велевобетонных оболожек $\mathcal{D}=1.6$ м, толщиной стенок $\delta=15$ см (марка бетона "400". $E=330.10^2$ МПа).

Наклонные опоры выполнены из металлических труб D=1420 мм с тольмной стенок S=14 мм.

- 1.2.2. Уклон металимческих опор составляет 3:1.
- 1.3. Расчетная схема (см.рис.3 п.3.2.1)
- 1.3.1. Сооружение разбивается на 81 конечный элемент. Количестью увлов при этом -72.
 - 1.3.2. Приняго три группи месткостинх карактеристик стержней:
 - 1-я группа описнвает вестностине характеристики стержней верх-

ПРИЛОЖЕНИЕ 6 (продолжение)

него строения пала;

- 2-я группа характеризует жесткостные характеристики стержней вертикальных опор:
- 3-я группа описывает жесткостные характеристики стержней наклонных опор.
- 1.3.3. Упругое основание стержней как вертикальных так и наклонных опор характеризуется местью группами жесткостей.
 - 2. ОПРЕДЕЛЕНИЕ ИСХОДНЫХ РАСЧЕТНЫХ ПАРАМЕТРОВ
 - 2.1. Расчет жесткостных характеристик опор
 - 2.1.1. Изгибная жесткость относительно осей \mathfrak{X}_i и \mathfrak{X}_i : для вертикальных опор

$$EJ_{x_4} = EJ_{x_4} = 330.10^2.0,1849 = 61.10^2 M Ta. w^4;$$

для наклонных опор

$$EJ_{\pi} = EJ_{\pi} = 2.10^5$$
 . 0,0155 = 31.10²MMa.m⁴.

2.1.2. Жесткость на кручение:

вертикальных опор

$$GJ_{mp} = 0.4 . 330 10^2 . 0.3698 = 48.8.10^2 M \Pi a.m^4;$$

наклонных опор

$$G\mathcal{I}_{KP} = 0.4 \cdot 2.10^5 \cdot 0.0313 = 25.10^2 \text{MHz.m}^4$$

2.1.3. Жестность на растяжение-сжатие:

вертикальных опор

$$EF = 330.10^2 \cdot 0.683 = 225.39.10^2 \text{MHz}$$
;

наклонных опор

$$EF = 2.10^5 \cdot 0.0442 + 88.4.10^2$$
 MH.

- 2.2. Расчет жесткостей упругого основания опор
- 2.2.І. Изменение коэффициента постели принято лимейно возрастакции с глубнюй.
- 2.2.2. В пределах каждого конечного элемента принят постоянный коэффициент постели, равный среднему значению коэффициентов постели на уровне начала и конца конечного элемента. Получениие в результате усреднения значения коэффициента жесткости основания при равномерном сжатии (К_І) для каждого конечного элемента приведены на рис... З настоящего Руководства.
- 2.2.3. Расчет козффициента жесткости упругого основания в направления продольной оси стержия производится по формуле

$$K_2 = C_K F + 0.7 \rho \Sigma (K_1), h_1$$

где F - площадь подошен опоры;

р - периметр ппоры;

 (K_i) , - определен выше;

h. - длина i-го стериня на упругом основания;

 \mathcal{C}_{κ} — коэффициент постели грунта под нижним концом опоры;

$$C_{K} = \frac{K \mathcal{Z}_{o}}{0.2 \mathcal{D}_{u}} \quad ,$$

где К - определен в п. 12 Приложения 2 настоящего Руководства;

 \mathcal{Z}_{0} — линейный параметр в м, принимаемый \mathcal{Z}_{0} = 10 м, если глубина расположения нижнего конца сваи $h_{1} \le$ 10 м, или \mathcal{Z}_{0} = h_{2} ; если $h_{2} >$ 10 м;

 \mathcal{D}_{u} - наружный диаметр круглого или сторона квадратного жли

приложение 6 (продолжение)

прямоугольного сечения сваи. Определение коэффициента К2:

для вертикальных опор

$$H_2 = \frac{2.23}{0.2.1.6} \cdot 2.009 + 0.7.5.024 [(19.5+58.5). 1.5 + (11.0+21.0+31.0+41.0).5] = 2527.7 \text{ MH/m};$$

ддя наклонных опор

$$\mathbb{E}_2 = \frac{2.16.87}{0.2.1.42} \cdot 1.5778+0.7.4.459 [(19.5+58.5). 1.5 + (10.0+18.0+26.0)4 + 31.87.1.87] = 1391.69 \text{ MH/w}.$$

2.2.4. Коэффициент постели основания по контакту боковой поверхности опоры с грунтом при сдвиге (Ка) принят равным 0,7 от величины коэффициента постели основания в горизонтальном направлении (К1). Значения коэффициента приведени в таблице настоящего Приложения.

Корфициент постели основания по контакту боковой поверхности опоры с грунтом

Номер группы жесткости упругого основания	1	2	3	4	5	6	7	8	9	10
Значения К _З (МН/ж ^З)	13,65	40,95	7,7	14,7	21,7	31,7	7,0	12,6	16,2	22,31

2.3. Расчет действующих на пал нагрузок

2.3.1. Исходные данные

В качестве расчетного судна принят танкер дедвейтом 150 тис.т. Боковая надводная площадь парусности $F_x = 7000 \text{ u}^2$; боковая подводная площадь парусности $F_{\pi}' = 3480 \text{ м}^2$. Расчетная скорость ветра $\mathcal{U}_r = 22.0 \text{ m/cek.}$, скорость течения $\mathcal{U}_r = 0.9 \text{ m/cek.}$

продолжение 6

2,3,2. Расчет нормативной инартовной нагрузии

Поперечиня нагрувка от действия ветра

$$R_{x_2} = 7.5.10^{-7}$$
. F_x . N_x^2 . $N = 7.5.10^{-7}.7000.22^2.0.5 = 1.27 MH.$

Поперечиля нагрузка от течения

$$R_{x_2} = 6.10^{-4} \cdot F_x' \cdot \mathcal{L}_x^2 = 6.10^{-4} \cdot 3480 \cdot 0.9^2 = 1.69 \text{ MH.}$$

Суммарная поперечная нагрузка от действия ветра и течення

$$R_{pr} = 1,27 + 1,69 = 2,96 MH.$$

Усилие иля кормового пала

$$R_x^n = 0.4 R_x = 1.18 \text{ MH}.$$

Воспринимаемая одной тумбой мвартовная нагрузка

$$P = \frac{R_{x}^{"}}{\sin\alpha \cos\beta} = \frac{1.18}{0.6428.0,766} = 2.40 \text{ M}.$$

2.3.3. Приводение действущей изортовной нагрузки к узловим симам, направлении вдоль координатных осей, и моментам относительно координатных осей.

Pacter no uporpasse PREMIR amnommetor ups medicinus na coopymense marpysm passon I.O Mi.

If we stoke $R_{e} = 0.492 \text{ MH}$, (om. $\frac{\text{II} 58-76}{\text{PHYMIT}} \text{ II.5.II}$).

Проежим единичной маартовной нагрузки на оси кооричат разви: поперечная

$$P_{x} = R_{x} = 0,492 \text{ MH};$$

продольная

 $P_y = P.cos < .cos \beta = 1,0.0,766.0,766 = 0,586 мн;$ вертикальная

$$\rho_{s} = \rho \cdot sin\beta = 1.0 \cdot 0.643 = 0.643 \text{ MH}.$$

Действующая швартовная нагрузка приводится к узду 5 (рис. 3 настоящего Руксводства).

UDN'HOWEHNE 6

(продолжение)

Иоменты относительно координатных осей определяются:

относительно оси
$$\mathfrak{X}$$

$$M_{x}=P_{y} \text{ 1,0 = 0,586 MH.m;}$$

относительно оси У

$$M_y = \rho_x \cdot 1.0 = 0.492 \text{ MH.m};$$

относительно оси $\mathcal Z$

$$M_y = \rho_x \cdot 1.5 + \rho_y$$
 . 1.5 = 1.61 MH.m.

2.3.4. Расчетные несущие способности опор пала приведены в таблице

Расчетные несущие способности опор пала

Name	Тип	пери	— Нормативный
Наимено вания не сущей с по со бна сти	железобетонная свая-оболочка D = 1.6 м; $\delta = 0.15$ м	металлическая труба D =14201 б = 14 мм	документ
Кесущая способность по грунгу при выдер- живании (МН)	3,85	2,51	СНип П-17 <i>-</i> 77
Несущая способность по грунту при сжатии (МН)	4,24	3,67	СНиП П-17-77
Несущая способность по пречности материа- ла на лействие попе- речкая сили (ИН)	10,0	4,0	СНиП П-56-77 СНиП П-ВЗ-72
несущая способность прочности материа- па на изгиб (М. м)	4,14	27,3	СНиП П-56-77 СНиП П-В3-72

приложение 6 (продолжение)

2.3.5. Заполнение теблиц исходных данных (см. Приложение 4)

Таблица I. Титульный лист

9	9	9	9												Γ							
Z	*																					
		K	0	Ħ	Ŧ	р	٥	Л	ь	H	Ħ	Ä		п	p	M	M	е	р			
Z	*																					
				K	y	P	0	q	ĸ	H	H		ü		H							
\angle	*										L						L		L	L		Ш
				M	ä	р	T	H	H	е	H	ĸ	0		Φ		A					
\mathbb{Z}	*											L			L						L	Ш
				r	е	p	а	С	×	M	е	H	K	0		H		В				
\mathbb{Z}	*																					
				P	y	H	0	B	а		M		3				L		L	L	L	
Z	¥																L					
				Г	e	₽	а	О	H	M	ė	Ħ	K	0		H		В				
V	*																					

Таблица 2. Признак системы

0					
/*					

Таблица 3. Топология системы

Знак		PMC		(E	181 181 171	īā.	¥;	MC SJE SO-	-																
I	2	3	4	5	6	7	8	9	0	Ī	12	ĽЗ	14	Ι5	6	17	18	19	50	SI	52	23	24	25	26
+	0	0	I	0	0	I	0	0	2																
C	+	0	0	I	0	0	6	+	0	0	0	+	0	0	I	+	0	0	Ι						
+	0	0	1	0	0	Ι	0	0	4																
C	+	0	0	Ι	0	0	3	+	0	О	q	+	0	G	0	+	0	0	I						
I	+	0	0	T	0	0	Ι	O	0	9	þ	1	0	H	0	0	0	+	0	0	Ι	+	0	О	2
+	0	0	1	0	0	6	0	0	8																
+	0	0	I	0	Q	5	0	0	8		T			1											

ПРИЛОЖЕНИЕ 6 (продолжение)

Продолжение табл. 3

Зягак	H	OMO	e p	¥	ом 3.Ла На	9	¥;	ОМ: ЗЛА КО-	8																
Ī	2	3	4	5	6	7	8	9	ĮΟ	Π	12	13	Ι1	Ε5	16	17	18	19	50	51	22	23	24	25	2 6
+	0	0	I	0	0	3	0	0	8																
+	0	0	Ι	0	0	3	0	0	5																
Ξ	0	0	2	0	0	Ι	0	0	9																
C	+	0	0	I	0	O	3	+	0	0	Ι	+	0	0	Ι	+	0	0	I			L	L		
C	+	0	0	4	0	0	I	+	0	0	4	+	0	0	4	+	0	0	4			L			
+	0	I	0	0	O	9	0	Ι	7													_			
C	+	0	0	I	0	O	3	+	О	0	0	+	0	0	I	+	0	0	I						
C	+	0	0	4	0	0	I	+	0	0	I	+	0	0	4	+	0	0	4						
C	+	0	0	8	0	0	6	+	0	O	2	+	0	0	8	+	0	0	8						
Z	*					Ш															L	L	L	L	
								ı			H								١.		l	1	l		

Таблица 4. Граничные условия

H.	OMC 3JL8	e p	(o)	l lei	3a)	кр т	en-	-
			x					
I	2	3	4	5	6	7	8	9
Z	*							

приложение 6 (продолжение)

Таблица 5. Характеристики типов конечных элементов

		CB6 Ka	Ť: (Xe	KE KE KA KA KA KE	С <u>н</u> 6 к о	TP T. (X.	ер оки абл ест ть ова)		Mep Mep	оки 26л. 23- 110- . се-	P.									
I	2	3	4	5	6	7	8	9	IO	II	I2	13	14	15	Ι6	17	18	19	SO	Ы
0	I	0	0	I												Ш				
0	I	0	0	6			L	L			L.									
C	+	0	0	I	0	0	9	+	0	0	0	+	Q	0	5					
0	2	0	4	6	0	5	6	0	8	6	3									
0	2	0	5	I	0	5	6	0	8	8	3									
C	+	0	0	2	0	0	I	+	0	0	0	+	0	0	0	+	0	0	3	
0	2	0	4	G	0	6	2	0	8	6	3									
0	2	0	5	I	0	6	5	0	8	8	3									
C	+	0	0	2	0	0	3	+	0	0	0	+	O	0	0	+	0	0	6	
7	*																			

Таблица 6. Жесткости, геометрические размеры сечения

Жe	CT	RO	CT	H,	r	еом	ет	ри	qe (K	ie	pε	131	1e)	ж	C	P F	H	я	_	
I	2	3	4	5	6	7	8	9	10	ĪΪ	Ι2	13	14	Ι5	16	17	18	Ī9	20	21	
6	I	0	0	0	,				Γ							Г		Γ			
6	I	0	0	0	,			Γ				Г									
4	8	8	0	0	,				Γ												
8	5	0	0	0	,		Г	[-					Г								
0	,			Γ																	
6	I	0	0	,																	L
6	I	0	0	,																	
4	8	8	0	,																	

приложение 6 (продолжение)

Продолжение табл. 6

	Sec	TI	500																	HE.	
I	2	3	4	5	6	7	8	9	D	П	P	В	14	Б	16	17	18	Ð	U	य	22
2	2	5	3	9	,															L	
0																					
C	+	0	0	5	b	0	3								L		L	L	L	L	L
3	I	0	0		L								L		_	_	L	L	L	_	Ц
2	5	0	0_	.	L	L	L		Ц				L	L	$oxed{L}$	L		L	L	_	Ш
8	8	4	c_		L	L	L											L		L	
0	,				İ																
C	t	0	0	5	0	0	3													Ĺ	
D	+		0	I	0	0	I	0	0	6	0	Ι	0					L			
D	+	О	0	I	0	0	I	0	2	6	0	3	0								
Ī	9	,	5																		
o	,																L		Ц		
I	3		6	5															L		
5	8	,	5																		
0							L										L	L	Ц	Ц	
4	0	,	9	5																	
I	I	L			L										Ш	Ш		L	Ц	Ц	Ц
Q	L	L	L	L	L		L	Ш	L						Ц			L	Н	_	_
7	١.	7	L	L	L	L	L								Ц		Ц		Ц	Ц	_
2	I	L.	L	L									Ц		Ц		Ц		Н	_	
0		L					L		L			Ц	Ц		Ц			_			_
I	4	L.	7	L		L	L								Ц		Ц	Ц			_
3	I	,																			
0	Ι.														Ш	Ц		Ц	Ц	_	
2	I		7				L	L			L	L	Ц		Ц					_	_
4	I	L	L		L	L	L		L		L.	L			Ш	Ц		Ц	Ц		_
2	5	2	7	L.	L	L	L	L	\sqcup		L	Ц			Ц	Ц			Ц	\Box	_
3	I	,	7		L	L	L	L	L		L_	Ш	Ш		Ц	Ц			Ц	_	_
I	0		L		L	L	L	L	L	_	L	Ц	Ц		Ц	Ц			Ц	4	_
0	L.		L	L	L	L	L	L	L		<u> </u>	Ц	Ц		Ц				4	4	4
7		L	L	L	L		L	Ц	L	L	L.,	Ц	Ц		Ц		_	_	Ц	4	4
I	8	L	L	1_	L	L	L	L	L	L	_	Ц		_	Ц		_	_	_	_	_
0	١.	L	L	L	L	L	L	L			L	Ш								\perp	┙

Продолжение табл. 6

1	e	T	co c	T	١,	re	0	40	Tp:	64	ec	iOI (e	pa	3M	e p	ч,	ce	90	HOM.	я
I	2	3	4	5	6	7	8	9	ю	IJ	12	13	14	15	16	17	18	19	20	81	22
I	2	,	6																		
2	6																				П
۵	L		L																		
I	8	•	2																		
3	I		8	7																	
I	3	9	1		7																
2	3	٠,	8															Г			
I	•	6																Γ	Γ		
I		6																Γ			
I	4	4	2																		
1		4	2													Ι_					
/	*									Γ											
																		L		L	
											1			1	L	١.	١.	1	١	١	

Таблица 7. Координати узлов

				Ro	ַוסנ) JD	HE	TE	1 3	73.	110	В					
I	2	3	4	5	6	7	8	9	10	п	E	13	I	ф ф	16	17	ΙE
4	,	5											Г				
-	4		5										[П		
_	4		5														
4		5			L			L									
I		ĽΣ															
0		5						Γ				Г					
_	I	,	5					Γ									
-	I	,	5														
D	+	0	0	I	0	þ	I	О	0	I	0	0	5				
<u>-</u>	I	,	8	3										П			
E	I		5														
I	Ι,	8	3														

приложение 6 (продолжение)

Продолжение табл.?

Γ				K	ooj	Ų	H		H								
I	2	3	4	5	6	7	8	9	10	Π	2	[3	[4	5	16	17	18
I	+	0	0	I	0	0	I	0	0	I	0	0	5				
-	6	,	3	9													
_	Ī	,	5														
6	,	3	9														
D	+	0	0	I	0	0	I	q	0	Ι	0	0	5		Ц		
_	6		8	7	_		L			_	Ц				Ш		
_	I		5	L							Ц						
6		8	7					Ц				Ш	Ц		Ц		
D	+	0	0	1	0	0	Ι	0	0	Ĩ	0	0	5				
_	7	,	3	5				Ц									
-	I	,	5					Ц		Ц					Ш		
7		3	5	L			L	Ц			Ш						_
D	+	0	0	I	0	0	I	0	0	I	0	0	5				
-	8	,	6														
_	I	,	5	L	L		L	Ц		_	Ц		_	_		_	_
8		6	L	L	L			Ц	_	_	Ц			_	Ц	_	
D	±	0	0	I	0	0	Ţ.	Q	0	I	0	0	5	_			
_	9		8	6				Ц	_	_				4	Ц	_	
_	I	ı.	5	Ш		Ш	_	Ц	_	_			Ц	_		_	
9		8	6					Ц	_	_	Ц			4	Ц	_	
D	+	0	0	I		0	1	q	9	I	0	0	5			_	
-	I	I	,_	I	3			Ц	_		Ц	_		_		_	_
-	I		5	_			Ш	Ц		_	Ц	Ц		4	-	-	_
I	I		I	3	Ц	L		Ц	_	_	Н	4	Н	4	4	4	
Д	+	0	0	I	0	0	Ι	q	0	I	Q	0	5	4	4	4	
_	I	I	•	7	2	L	L	Ц			Ц	Ц	Ц	4	4	_	
-	I		5	L		L	L	Ц			Ц			_		_	
I	I	<u>.</u>	7	2	L	L		Ш		Н	4	4	4				
-	- 4, 5															_	
	4_		5	<u> </u> _	L	L.	_	Ц	_		Ц	_	Ц	4		_	
4		5	L	Ļ.,	 _	_	<u> </u> _	Ц	Ц	Ш	Ш	Ц	Li	_	_	_	
4	Ŀ	5	L.	L	L_	L_	L	L	Ш		LJ	لــا					

Продолжение табл.7

				K	00]	ЭДТ	HE	T	H.	78.	TO:	В					
I	2	3	4	5	6	7	8	9	[0	IJ	12	13	[4	15	16	17	18
I	,	5						П									
-	I	,	5														
_	I		5					П									
I	Ŀ	5															
I	+	0	0	I	0	0	I	0	7	3	0	7	6				
_	I	<u>,</u>		3			L										
_	I		5														
I	,	8	3														
I	,	5															
T		0	0	I	0	0	I	0	7	3	0	7	6				
1	6	,	3	9				L					L				
_	I	,	5			L	L	L					L				
6	,	3	9	_									L				
I	,	5															
D	+	0	0	I	0	0	I	þ	7	3	0	7	6				
_	6	,	8	7													
	I	•	5				<u></u>						_				
6	,	8	7			L_	L				<u> </u>		L		L		
I	,	5				Ĺ	<u> </u>		_	_	L		L	L	_		
D	+	0	0	Ι	0	0	I	þ	7	3	0	7	6	L	L		
	7	,	3	5				L	_	<u> </u>				_	<u> </u>		
_	Ĩ	,	5		_	ļ	<u> </u>	L				_	<u> </u>	_	-		
7	•	3	5					_	<u> </u>			_	<u> </u>	<u> </u>	_		
I	•	5				_	_	-	 	 	_	L	_	_	<u> </u>		
D	+			I	0	0	I	<u>p</u>	7	3	0	7	6	_			
	8	•	6	L			L	L	_	_	<u> </u>		L	<u> </u>			
	I	,	5		ļ	L	_	L	L -	_	_	ļ	Ļ.	<u> </u>		 	
8	,	6		L.,	_	ļ		<u> </u>	L.	L	_	 	_	<u>L</u>	L		
I	,	5				<u> </u>	L	ļ	<u> </u>	 	_	L.	ļ	<u> </u>	_		
D	+	0		1	0	0_	<u> </u>	P.	7	3	0	7	ô				
	9			6				L.	_	L.,	L						
	[]	,]	5		<u> </u>	L	<u> </u>		L	<u> </u>	L_	L_	l	L.	 		}

Продолжение табл.7

Г			Кο	op	III.	на	ГH	У	зл	OE						-		7
I	2	3	4	5	6	7	8	9	ΕO	I	12	3	14	15	16	17	18	Īg
9		8	6															
I		5	Г	Γ	Γ													
D	+	0	0	I	0	0	I	0	7	3	0	7	6					
_	I	I		I	3													
_	I	L.	5	L	L		L	L						L	L	L		Ц
I	I	ļ,	I	3	L	L	L	L						L	L	L		Ц
I		5	_	L	L	Ц	L.	L	Ц	Ц			_		L	L	Ц	
D	+	0	0	I	0	0	I	0	7	3	0	7	6	L	L	L		
_	I	I	Ŀ	7	2	Ц	L	Ц		Ц	Ц	_		_	L	L	L	Ц
_	1	<u>,</u>	5	_	L	L	L	Ц		Ц	Ц		_	Ш	L	L	L	Н
I	I	٠	7	2	L	L	L	L	L			L	L	_	<u>_</u>	L	L	Ц
I		5	L	L	L	L	ļ	L	L	Ш	Щ	_	ļ	L	L	L	L	Н
0	2	_	L	Ļ.	_	L	-	_	L.	Н		L	_	<u> </u>	<u> </u>	L	_	Н
C	+	0	0	I	0	0	7	L	_	Ш		L	L	ļ.,	L	L	Н	Н
C	+	0	0	8	0	0	I	E	I	0	0	<u> </u>	_	<u> </u>	L	_	H	Н
إ	2	3	,	7	5		<u>_</u>	Ц	L	Н		ļ.,	_	L	ļ.,	L	L	Н
C	+	0	0	I	0	0	7	L	_	Н	_	ļ	_	H	ļ.,	H	H	-
듸	2	5	•	2	5	_	Ļ	H	L	Н	Н	┝	_	-	-	-	Ŀ	Н
드			0	I	0	0	3	-	-	Н	Н	┝	١.	Ļ	┝	H	-	Н
౼	2	5	٠	Ī	Ļ	Ļ	Ļ	H	-	H	Н	┝	-	-	┝	-	Н	Н
C	+	0	0	I	0	0	3	-	L	Н	-	┡	-	H	┡	├-	H	Н
듸	2	6	ž	7	5	Ļ	L	H	L	Н	Н	Ļ	Н	┝	┝	-	Н	Н
C	-	6	0	<u>I</u>	0	0	3	-	-	-	-	-	-	-	-	-	H	Н
c	_	0	0	5 I	0	6	3	╁	┝	┝	┝	H	┝	-	┝	⊢	H	Н
	+	ĭ	۲	7	5	۴	۴	+	┝	H	H	┝	-	-	-	-	H	Н
c	<u>ع</u>	0	٥	í	<u>ာ</u> ဝ	0	3	╁	┢	H	┝	H	┝	┝	H	-	╁╌	Н
	3	0	۲	3	۲	۴	۴	+	┢	Н	-	1	H	H	H	┢	H	Н
c	-	-	ò	٥ I	0	6	3	+	t	H	۲	1	-	-	H	H	۲	Н
H	3	6	۲	7	5	۴	۲	t	1	+	H	1	۲	Н	H	H	H	H
c	픳	0	0	Í	0	0	3	t	†	H	H	۲	H	H	1	H	H	Н
3	4	Ť	0	_	ř	f	۲	t	╁	H	┝	H	H	H	H	H	1	H
č	Ť	ò	ŏ	Ť	6	6	Ь	t	T	Т	Т	1	Г	T	Г	Г	Г	П

приложение 6 (продолжение)

Процолжение табл.7

	_			Ko	op	QB 1	18	ГH		yэ	ло	E						
Ī	2	3	4	5	6	7	8	9	ΙO	Ħ	12	13	14	15	16	17	ΙØ	19
-	4	I	,	7	5								Γ					
C	+	0	0	I	0	0	3	Г										
-	3	7	,	8	7													
C	+	0	0	Ī	0	0	3											
-	4	6	,	7	5													
C	+	0	0	I	0	0	3	Γ	Γ		Г							
-	3	9	,	6	4			Γ			Γ	Γ	Γ					
C	+	0	0	I	0	0	3	Γ			Г						П	
Z	*																	
						Γ		Γ		[Γ	Π		Γ		1		

Таблица 8. Описатели загружений

1	()111	1C	T	ЭЛІ	1 8	a	.b2	78.	eн	ий	l		
	Ι	Z	3	4	5	6	7	8	9	ΞO		12	13	14
	5													
1	/	*												
ı														

Таблица 9. Нагрузки

	i	JK:	ep a	E G	C' BI	rpi Ti O	мер ока обл (ве на оуз-	Pi	меј Да				
	Ι	2	3	4	5	6	7	8	9	10	II	12	13
	0	0	5	I	0	С	I	I					
1	0	0	5	2	0	0	2	I					
	0	0	5	3	0	0	3	I					

Продолжение табл.9

Но У	ме 3Л	p a	Направление нагрузки	С Р Л	тр Т О ич	ер оки абл. (ве- ина руз-	Номер вица					
I	5	3	4	5	6	7	8	9	ΙJ	ΙΙ	12	13
0	0	5	4	0	0	4	I					
O	0	5	5	0	0	Ι	I					
0	0	5	6	0	O_	5	I					
Z	*							L				
	L	L		L				ļ.,	L.,			
L					L_	L			L1			

Таблица 10. Величины нагрузок

	Величины нагрузок											
I	2	3	4	5	6	7	8	9	D	I	12	
+	0	,	4	9								
-	0	,	5	8								
+	0	,	6	4								
+	0	,	õ	8								
+	Ι	,	6	Ī								
\mathbb{Z}	*											

Таблица II. Несущие спрсобности элементов

	Величины несущих способностей элементов									
1	2	3	4	5	6	7	8	9	IC	
3	,	8	5							
4	,	2	4							
I	0	,								

приложение 6 (продолжение)

Продолжение табл. II

OII	Величини несущих способностей элемен— тов										
I	2	3	4	5	6	7	8	9	10		
4	,	Ι	4								
C	+	0	0	4	0	0	3				
2	2	5	I								
3	,	6	7								
4	,	0									
2	7	,	3								
C	+	0	0	4	0	0	3				
Z	*										

з. Распечатка исхолных данных на эвм-

приложение 6

(продолжение)

BORRODBAHNA NHOTNTYT OPTRHEPTOSTPOA DAEDCKNA OKNA A

0 5 6 E K T N 9999

ЛЕННОРНАНИЙВЕКТ КОНТРАЛЬНЫЯ ПРИНЕР-

нач. ОТДЕЛА
гл. опециалиот
рук. группи
проверил
отв. иополиитель

REPOGRAM C.H.
HAPTÜHENKÜ +.I.
FEPAGMAEHKO H.B.
PEMOBA M.S.
FEBAGMAEHKO H.B.

11.11.11

TABALE TOROLOGUE CHETENN

:	/-T	y 3 HAU 1		тип	9/-	7	¥ 3	A M	-4		у з нАц !	NOH.	r Kn
1	2 3	1	2	1	1234567698123456769812345676981234567698123456769812345676981234567698123456769812345676981234567698	:	24	32	34444395566667		! ė4	72	23
į	2	1 2 3 4 5 6 7	2 3 4 5 6	1 1 1 1 1 1 1 1	123456769912345676991234567699123456769912345676997777778	: : :	25 26 27	33 34	1.4	! !	;		
:		: 4	3	i	14	:	27	35	14	:	;		i
:	5	: 5	6	1	: 45	:	28	36 37	14	i	1		
:	4	6	7	1	: 46	:	2 🕈	37	15	1	:		
:::::::::::::::::::::::::::::::::::::::	5 6 7 8	7	8	:	: 37	i	36	38	1 2	:	:		
•	:		•	1	49	•	3!	39	12	1	;		
i	10	1	á	i	: 11	:	32 33	41	16	ì	i		:
:	11	1	7	1	: \$1	:	34	4 2	16	:	:		
:	9 10 11 12 13	. 2	5 6 7 7 8	1	: \$2	:	35	49 42 43 44 45	16	! ! !	!		:
:	13	2	8	1	: 23	:	36 37	44	10	:	:		,
	1 8	122653312345678	A	1	45	:	38		17	:	<u>.</u>		:
:	15	• •	8 8	1 1 1 2 3 4 5 6 7 8 9 8 8 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	. 16	:	39	46 47 48 49 38	17 17 18 18 18 19 19	:	į		
:	17	: 3	5	1	: \$7	:	44	4 6	17	:	:		;
:	18	1	. 9	2	: \$8	:	41 42 43	4 9	1.0	1	:		:
;	19	. 2	11	3	37	:	42	3	10	;	•		
:	21	.	iż	3	: 61	;	44	3)	10	;	;		
:	22 23 24	: 5	13	6	42	:	45	5 Î 5 2 5 3	19	:	•		
:	23	6	14	7	: 43	:	44	54	īţ	: .	Į.		
:	25	7	15 16 17	5	: 11	:	47 48	255555556142	17		:		
			17	16	14		49	20	4.0	!	:		
:	27	: 10	18	10	: 17	:	58	98	19 28 28	i	•		
	28	11	19	10	: 48		51	5 9	2	i :	1		1
: :	29 36	11 12 13	20 21 22 23	10	: 49	: : :	52	6 €	2 🕯	:	<u> </u>		•
:	36	13	21	11	: 75	:	53 54	61	21	!	:		
		15	23	11	. 12	:	55	63	21		:		ž
:	33		24	ii	: 93	:	56	5.4	21		i		ì
	34	17	24 25	12	: 74	:	57	6.6 6.5	22		;		:
:	35 36 37 38	67 89 B 1 23	26	11 11 12 12 12 12 13 13	: 13	:	58	66	2 2	!	:		
:	30	19	27 28 29	12	: 79	:	59 68	67 68	28	•	•		•
i	38	20	29	13	: 78	:		69	23		i		:
į	39	, 52	30	13	. 19		61 62	78	23	i	:		i
;	39 4e	: 53	31	13	: ##	:	63	75	7 2 2 2 2 2 2 3 3 3 3	1	:		

TÁ	11.2	PÄGŸETHWE	BAEHEHTW
:	18	:	
:	19	:	
:	26	:	
:	21	:	
:	22	:	
:	23	:	
:	24	:	
•	25	:	

продолжение 6

TA6/I	. 5	KAPAKTE	PUCTHE	и Типо	B KOHI	чны	(avi	EMENTOS			
` าท ก		HOMEP	B MAC VECKMX TEPMCT	CMBE :	JAN-		npo UE-	HOMEP HOMEP ANAMAK	B MAC	CHBE :	Ubn-
	: PA : :	MECTK 97-TA		PA3M CE4E- HNR	CE4E-	TNN	PÅ	WECTH		PA34 : Ceye-: Hun:	CEUE-
2 3	1	1 6	*		** ** ** ** ** ** ** ** ** ** ** ** **	21 22	2	\$1 46 51	BAHNX:	5 5 6	3
45 6		16 21 26	-	-	•	23	Ž	51	äš	54	3
. 8	; 1 ; 1 ; 1	31 36 41	-	-				; ; ;			
111	: 1 2 2	51 46 51	56 56	- 56 88	3						
15	***************************************	: 46 : 51 : 46	59 59 62 74	86 88 86	3 3			1 2 4 5 2			
18 19 20	- 5 5 5	46 51	65 77	88 86	3			•			

TABALA MECTKO	сім эленентов	ФN3N4ECKN E	XAPAKTEPHCTHKH
1234567890 01185 11234567890 05185 112345 112345 112567890 112345 11567	10000000000000000000000000000000000000	6100 000: 448: 488: 488: 488: 488: 488: 48	\$100.00: \$100.00: \$500.00: \$540.00: \$100.00: \$100.00: \$2539.00: \$2539.00: \$100.00: \$2539.00:

ПР**ИЛОЖН**ИЕ 6 (предожжение)

*HSMMEGHNE NAPAKTEPHOTHKH

TABA.7	MECTROSTN SCHOBAHNS	i
	******	*****
1 561	19.50: 741	7.661
1 571	.09: 771	
		18.441
1 58:	13.65: 78:	
1 391	\$8.56: 79:	12.661
1 68:	.05: 60:	
		16.00
: 61:	48.95; \$11	.##;
: 62:	11.00: 82:	18.291
: 63:	.68: 63:	
		21.671
: 64:	7.70: 94:	1391.76
: 65:	21.00: 55:	23.861
1 66:		-,
67:	14.78: 1	Ī
68:	31.05: 1	r
: 69:		i i
7 .	21.79: :	1
		1
: 71:	41.68: 1	
: 72:	2527.78: :	1
: 73:	31.79: :	:
1 741	10.00:	Ţ
: 75:	.09: :	

физических характериотики. фабл. в разнери поперечного сечения (и)

•	-	٠	٠	•	•	٠	٠	
ţ	ê	6	ţ	1		Ġ	ė	:
:	8	7	;	1	٠	ô	ġ	:
ţ		Ş						;
:		ě	Ì	1		4	2	•

IIO

ПРИЛОЖЕНИЕ 6 (продолжение)

TABA.9	KHOPA	MHATH YE	108			
:yaen:	,	: Y :	ž jysen	i k	γ :	2 :
1234567898123456789812345678981234567898123353333333333333333333333333333333333		-4.500 4	123456789E12356789E123567899E12356789E123567899E12356789E12356789E12356789E12356789E1235678		- # # # # # # # # # # # # # # # # # # #	

продолжение 6

TABA. 18	MAPAK	TEPHOTUKH	HAPPYON	!
PPY:	y 3 y A 3 A - T i	HARPAS AEHUE AERCTBUR	MACCHDE !	BNG
	A444.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	1 2 3 4 5	to grap, discount	1 1 1 1 1

TAB							
			 ••		-		
:	1	•			4		
:	2	:	•	٠	5	9	1
:	3	:			6	4	i
:	4	:			5	9	;
1	3	:	 1		6	2	:
	,	٠	 	٠			

табл. 12 - Вебуние спосовностр

N-	N+	9	н
3.85 3.85 3.85 2.51 2.51 2.51	4.24: 4.24: 4.24: 3.67: 3.67: 3.67:		4.14: 4.14: 4.14: 27.36: 27.36:

4. PESTATH PACTETA HA SEM

CTAANH 1

СУММАРНОЕ	RNASTRE CTARAS AND STATE OF THE PROPERTY OF TH	4	31.671 MM
CYMMA PHOE	NA CORTA RAHGAMMYS RHARPMANE GIOHANARAM RAHGAMMYS RHARPMANE GIOHANARAM RAHGAMMYS ANNOY ANNAMAMANARAM RHARPMANE GIOHANARAMORAMOS R NNJAYATSHAMBANARAMANARAM E RHARPMANARAMOS RHARPMANARAMAN	3	67 , 780 MM
СУММАРИОЕ	СУММАРНАЯ НАГРУЗКА НА ПАЛ 4.550 МН ПРОДОЛЬНОЕ УСИЛИЕ В ЭЛЕМЕНТЕ 22 ДОСТИГЛО ПРЕДЕЛЬНОГО ЗНАЧЕНИЯ МАКСИМАЛЬНОЕ ПЕРЕМЕЩЕНИЕ КОНСТРУКЦИИ В ГОРИЗОНТАЛЬ НОЯ ПЛОСКОСТИ В УЗЛЕ СТАДИЯ 4	2	88 . 869MM
СУНМАРНОЕ	CYMMAPHAR HAГРУЗКА НА ПАЛ 4.843 MH ПРОДОЛЬНОЕ УСИЛИЕ В ЭЛЕМЕНТЕ 20 AOCTMFAO ПРЕАЕЛЬНОГО ЗНАЧЕНИЯ МАКСИМАЛЬНОЕ ПЕРЕМЕЩЕНИЕ КОНСТРУКЦИИ В ГОРИЗОНТАЛЬ НОЯ ПЛОСКОСТИ В УЗЛЕ	2	104. 632 MM
			(g

II

CIAGNS 5

СУММАРНАЯ НАГРУЗКА НА ПАЛ 5.018 MM ИЗГИБАЮЩИЯ МОМЕНТ В ЭЛЕМЕНТЕ 20 ДОСТИГ ПРЕДЕЛЬНОГО ЗНАЧЕНИЯ СУММАРНОЕ МАКСИМАЛЬНОЕ ПЕРЕМЕЩЕНИЕ КОНСТРУКЦИИ В ГОРИЗОНТАЛЬ НОЯ ПЛОСКОСТИ В УЗДЕ 2 117.379MM СТАДИЯ 6 RUHAPPAHE OTOHOLARA PARTAMENT BENDARAN SANGER THAMPH BURGABUTEN CYMMAPHOE MAKCHMANSHOE TEPEMELEHNE KOHCTPYKUNN B FOPMBOHTANS HON THOCKOCTN BYBARE 2 119.413MM CTARMS 7 СУММАРНАЯ НАГРУЗКА НА ПАЛ 5.071 МН изгибающия момент в элементе 18 достиг предельного значения суммарное максимальное перемещение конструкции в горизонталь ноя плоскости в узле 2 124.184HH S RNAATS СУНМАРНАЯ НАГРУЗКА НА ПАЛ 5.114 МН ИЗГИБАЮЩИЯ МОМЕНТ В ВЛЕМЕНТЕ 21 ДОСТИГ ПРЕАЕЛЬНОГО ЗНАЧЕНИЯ СУНМАРНОЕ МАКСИМАЛЬНОЕ ПЕРЕМЕЩЕНИЕ КОНСТРУКЦИИ В ГОРИЗОНТАЛЬ НОЙ ПЛОСКОСТИ В УЗЛЕ 2 РАСЧЕТ ОКОНЧЕН ОСТАЛАСЬ ОДНА СВАЯ 131.278MM

приложение 6

(продолжение)

Уравнение предельного равновесия виполняется

$$n_c \cdot \mathcal{K}_n \cdot n \cdot \mathcal{N}'' \leq m \cdot \mathcal{R}_{np}$$
;
I,0. I,25. I,25. 2,40 \leq 0,75. 5,II;
 $3,75 \leq 3,83$.

Перемещение пала при пормативной ивартовной нагрузке $\mathcal{N}''=$ = 2,55 MH составит 6,5 см, что не превимает предельного допустимого перемещения верха пала ($\Delta_{RD}=60$ см).

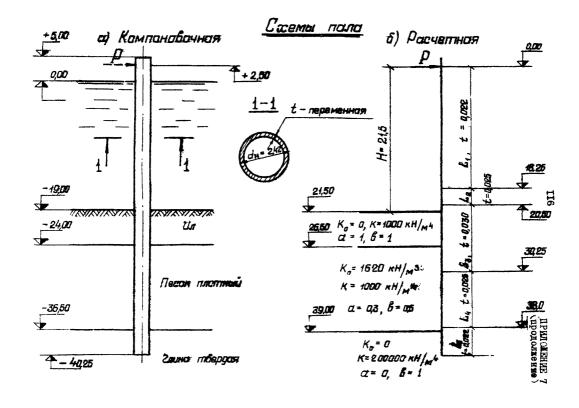
приложение 7

(оправочное)

ПРИМЕР РАСЧЕТА ОТБОЙНОГО ПАЛА

1. УСТАНОВЛЕНИЕ КОМПОНОВОЧНОЙ СХЕМИ СООРУЖЕНИЯ

1.1. Исходине данине


- 1.1.1. Расчетное судно танкер водоизмещением 1500 MH с предельной магрузкой на бортовое перекрытие 250 кH/m^2 .
 - 1.1.2. Навал воспринимается одним палом.
 - 1.1.3. Глубина у причала 19 м, отметка кордона + 5,0 м.
- 1.1.4. Грунт основания с отм. -19,0 до-24,0 м-ил (R=1000 кH/м⁴ $\alpha=1$, $\beta=1$), с отметки -24,0 до-39,50 плотяни песон ($R_0=1620$ кH/м³ , R=1000 кH/м⁴ , $\alpha=0$,3 , $\beta=0$,5), с отметки -36,50 глина твердая ($R_0=0$, R=200000 кH/м³, $\alpha=0$, $\beta=1$).

2. ROHCTP YRTUBHA & CXEMA

Для расчета принимается опора пела (рис. α) из стальной трубы наружным диаметтом α'_H = 2,42 м со стенкой переменной толпи— ни от 22 до 30 мм, сталь класса 52/40, марки 10ХСНД с расчетным сопротивлением R = 340000 кПа и R_{co} = 200000 кПа

В. РАСЧЕТНАЯ СХЕМА

War расчета ℓ поинят равным 0,5 м, начальная глубина погружения в грунт 20 м, плечо H = 21,5 м (рис. δ).

ПРИЛОЖЕНИЕ 7 (продолжение)

4. PACTET SASIA

 Расчетная кинотическая энергия навала судна при подходе к причальному сооружению

$$E_{H6} = n_c \pi \sqrt{\frac{D_c \cdot v^2}{2 q}} = 1 \times 1; 25 \times 1; 6 \frac{1.5 \times 10^6 \times 0.09^2}{2 \times 9,81} = 1238 \times D \infty,$$

где $n_o, n, \sqrt{1}, D_o, \mathcal{V}u$ q определени в п.З.З.5 настоящего Руководства.

4.2. Расчетная энергопоглощающая способность опори пала, рассчитанная на ЭВМ (п.6 настоящего Приложения), равна 443 к \mathfrak{D} ж при расчетной горизонтальной силе P_{P} = 1527 кH.

Таким образом, энергопоглощающей способности собственно пала недостаточно для гашения энергии навала от расчетного судна

Необходимо оборудовать пал отбойных устройством. Принимаем для установки отбойное устройство типа C 1700 H (самое ближайшее по своим характеристикам) с энергоемкостью $E_{\Lambda}=1050$ к D ж при максимальном усилии сжатия $P_{\rm em}=1700$ кH.

Суммарная энергопоглощающая способность пала вместе с отбойным устройством

$$E_n = E_1 + E_2 = 1050 + 443 = 1493 \text{ KD} \text{ m}$$
.

Условие $E_{n6} \leq E_n$ выполнено.

Получинся некоторый запас по энергопоглощающей способности. Учитивая, однако, что расчетная горизонтальная сила на пал ($P_{\rho}=1574$ кН) меньше максимального усили с статия отбоиного устройства, его энергоемкость будет также несколько меньше паспортной.

ПРИ ЛОЖЕНИЕ 7 (продолжение)

- 4.3. Несущал способность сечений опоры пала на действие изгибающего момента и перерезывающей силы обеспечена (см.табл.4 результатов расчета на ЗВМ, п.6 настиящего Приложения).
- 4.4. Площадь отболного шита для распределения реактивного усилия от пала на корпус судна

$$S = \frac{P_P}{Q} = \frac{1527}{250} = 6.1 \text{ m}^2$$

где P - горивонтальная сила, на которую рассчитан собственно пал;

Q предельная нагрузка на бортовое перекрытие судна.

5. БЛАНКИ ИСХОДНЫХ ДАННЫХ

Первий набор

NB1
1

Второй набор

ε,	ε,	α	K) ep	e	K	H	вѕн	PRP
0.005	0.001	0	5	3	0.25	80	21.5	0	0

Третин набор

E	j np	
2.188	5	

ПРИЛОЖЕНИЕ 7 (продолжение)

четвертий набор

Массив характеристик труб

y mp	0	18.25	20.5	30.25	38	
d _n	2.42	2.42	2.42	2.42	2.42	
t	0.022	0.025	0.030	0.025	0.022	
R	283300	283300	283300	283300	28330 0	
Rcp	166700	166700	166700	166700	166700	

Пятый набор

ITER	ZKN
1	0

Шестой набор

Иассив харантеристик грунта

y_{rp}	21.5	26.5	39		
K.	0	1620	0		
K	1000	1000	200000		
α	1	0.30	0		
ħ	1	0.5	1	<u> </u>	

Приложение 7 (продолжение)

Четвертый набор

Нассив характеристик труб

y _{mp}	0	18.25	20.5	30.25	38	
d_{H}	2.42	2.42	2.42	2.42	2.42	
ŧ	0.022	0.025	0.030	0.02 5	0.022	
R	263200	283300	2 8330 0	283300	283300	
\mathcal{R}_{c_P}	166700	166700	166700	166700	166700	

Пятни набор

ITER	ZKN
1	9

шестой набор

Массив харантеристик грунта

420	21.5	26.5	39	•	
Ko	0	1620	0		
K	1000	1000	200000		
α	1.	0.30	0.		
B	1.	0.5	1		

121

приложение 7 (продолжение)

6. РЕЗУЛЬТАТЫ РАСЧЕТА НА ЭВИ

KONMECÍBO CTYMENER HAPPYSKN ETW S Konnecíbo Ctymener happyskn etw s

MAT SHED. 25

MOAYAL YAPPOCTH Es 4.10008+08

TIMENO CHAN P HARTISE

TOUNDETS HYSPAUNONHORD DEGLECCA ERSTRO, 00900000 Toundets offerener pacyethor tophsontansher Harpyski Ebizho, 00100000

APAKTEPHCTHKH PUPHTA

TABRHHA 4

BENTHER OTHER CONTRA CO	MAPAMETP KO,	MAPAMETS K,	LUAPHE CIEUENN CIEUENN	HOKASATENA CTENEHA CTENEHA HORASATENA HORASA
21,50 24,50 37,00	0 1620 0	1960 1960 200960	1,00 0,30 0,00	1300 0490 1300
} * * * * * * * * * * * * * * * * *	 	 	 	

XAPAKTEPHSTHKH HATEPHANA

ТАБЛИЦА 2

DTMERUS CTMERUS	HAPYNHUR GHAMEV TPYSH DN,M	TOMBUMA CYENKU TPYSOU T.M.	PACHETHOS C CTANY Maryby, N	OTPUTABAEHAE
0,00 1 (8.25 1 20,50 1 30.25 1 38,00	2,420 2,420 2,420 2,420 2,420	0.0830 0.0830 0.0800 0.0800	2#330v 3#330v 3#330v 2#330v	166700 1 166700 1 166700 1 166700 1

ATAHUAGOON HAMBHER HAMBH THE	TEPEMEWEHHE,	nguapata,	MSPUBARRUS MSMEHT, MI,KH+M,	перерезывающая сила,	PEAKUUR PPyhta,	PACHETH KOBAAT PEARWA PPYHTA ESIKNA
	****	,		i 01,KH, i	R, KH/M	
₹1,50	0,08578	0,01355	+32831,3905	1527,0614	0,00000	3 0,0000
21.75	0,08243	0,01330	* +35215,1509	1927.0414	-44.86802	* ***.00000
22.00	1 0,07913	9.01304	-33991,7965	1514,5744	-95,74841	12]0,00000
22,25	0,07590	0.01281	-33944,4538	1490,6373	-137,75457	1815.00000
22,50	0.07273	0,01256	-34324,5035	1456,1986	-174,00034	3440,00000
22,75	0,04942	0.01230	-34481,5531	1412,1745	-210,40211	3043,00000
23.00	0.00458	0 01 204	-35021,4401	1359 5680	-261.67742	3430,00000
23,25	0,04340	0.01178	+35344 5555	12** 1286	-269,34542	6223,00000
23,50	0,0404	0,01152	-35654 1703	1271,7923	-275.72440	4840,00000
23,73	0:05784	0,01125	-35943 7495	1158 3606	-314,94277	34.5 ,00000
24,00	0.05506	∂ ૄ61 09♥	#36215 6467	1079 4249	-333 11607	*o*o,00000
24.25	0,0\$235	0,01072	-56444 7532	794 3457	-348 37292	4475.00000
24,50	0.04470	0,01045	-36670 0665	*0* 2525	-340 43584	7296
24 75	0.94712	0,01917	-36894 8272	819 0435	-370 63163	· 7001 台景
23 .00	0,04441	0,00990	-37074 6236	726 3857	-377 ,88604	44(4)
25 25	0.04217	0,00943	-37234 4021	431 9142	-342 72662	WHO WE HAVE
49 50	0 03980	0 0 0 9 3 5	-37368 4603	534 5325	-385 26040	**** # # #
₹\$ 7.5	0.03750	0,00907	-37678 4384	434 4126	-365 47520	10221 6 7
** 00	0-03527	0,00000	-37544 3118	363 4936	-384 03847	10846
26 25	0 03310	0.00458	-37629 1828	247 4840	-380 49797	11475

_	_
•	7
*	٦
v	·
-0	

45,50	0,03101	0,00824	-37464 2726	152,3595	-4*0 13236	55562 40242
24.75	0,02898	0,00796	-37659 2242	-20,1737	-939 21916	38447,04843
27.00	0,02703	0.00765	+37943 4853	-254 9557	-967 68663	35803_60334
27 25	0,02514	0,00740	-37471 2795	-696 4232	-973 60443	38763 66464
27,50	0.02333	0.00713	+37850 2357	-760 1768	-948 33743	41515 13*83
27 75	0,02158	0,0048	+37049 4440	**** 204*	-+\$5 P733+	44303 93595
28 00	0 01990	2,0005	-36737 3977	-1221 1453	4938 55254 T	67194 23761
28 25	0.01829	0,00431	-36371 6662	#1655 7258 1	•917 25551 ¹	501>4 20904
24 50	0 01474	0_00*0*	+35950 2214	-1646 2796	.472 43134	53361 17567
28 75	0 01527	0.00578	+35473 1902	-1908 1246	-865 T8330	50740,21494
29 00	0 01386	0,00548	-34962 0440	-2126 5048	-#34 45 958	40394 57489
29 25	0 01254	0,00526	#3435# 6762	-2533 5512	-805 10227	64391 56185
29 30	0 01128	° 000 ≥ 61	-33724 9874	*2534 7551	4771 873 9 6	68737 01184
29 75	0 01000	0 00476	-33043 0753	-2727 6486	-736 87216	73671 12006
30 00	0 00885	0 00452	-32313 1203	#Z*11 7880 1	-700 13525	79426 84586
30 25	0 00775	0 00428	-31543 6435	-3086 7390	-661 66179	85666 59108
30 50	0 09674	่อ่องจักร	-30759 4240	-5272 0421	-421 54044	72646 70503
30 .75	0 00574	0 00374	-29878 5884	-3407 3398 I	-580 06214	101091 94018
31.00	6,05484	0,70348	-28990 5180	-3552 2767	-537 01989 1	110070 24998
31 25	: 0,00440	0,00323	-28049 9124	-3656 6261	-497 21047	123021 42284
31,50	0,00322	0,004+8	#2711 <u>9</u> 5712	-3807 3646	-449 26157	138147 94204
31 75	1 0,00251	0,00275	-26130 4324	-3920 5552	-395,55390	157797 43984
25.00	0.00185	0,00452	-25131 6061	-4019 3052	-342,01004	187093,19202
12,25	0,00124	0,00231	-24107 4436	-4104 4499	-242 36255	2270#5 76764
32,50	0,0000	0.00240	-23061 6679	-4175 1028	-212,39478	3040/8,48293
32 75	0,00019	0.00190	-22004 4786	-4227 +975	-113 13860	581903 98561

33.00	-0.00020	0,00171	-20940,7887	-4255,7993 1	130,75020	804792,52537
33 25	-0.00066	0,00153	-19889 0485	-6222,7208	211,10001	319340 ₄ 78427
33,50	1 =0.00102	0,00136	+18842,6249	-4109 4945	264,04473	250560,51038
32,75	*G,00134	0,00120	-17810,7696	-4103,3013	306,16774	224792,24400
34,00	50,00162	0,00104	-1680- 4832	-4027,3056	336,21045	207301,94913
34 25	-0,00184	0,00000	-15884 1437	-5963 1178	362,40294	194977,87972
34,50	* =0,0020F	1 20076	-14841,0448	+3832 3955 T	284,08842	185544,69942
36,75	70,00225	3,00066	*13921 9755	-3756,2773	404 41429	178842 . 14544
35,00	-0,00239	0,00058	*13004.0514	+3635 6963 T	414 43201	174147 22772
33,25	*0,00254	0,00041	1 707,08451	-3551 4631	428,40173	170932 87054
35 50	-0,00240	0,00030	* **1257 1396	-3444 2037	438 14374	144772 04327
35,75	*0,09266	0,00021	#10423 A#37	-3334 3843	445 \$1054	167425 247648
34,00	1 -0 00276	9,00012	-+617 7117	-3223 1281	430,40440	166906,32834
34,22	-0.00272	0,00004	*8842 1296	#3110 3275	454 50004	167000,66511 11 10
34,50	1 -0,00272	*0,00004	-8092 9716	+2994 6328 T	454 43932	167649 96284 8
34 79	1 -0,00276	-0,00010	47372 3569	-2892 4884	454 82703	148933,41514
3 F 0 O	-0.00257	-0,00017	**** 3075	-2764 1898	455 78529	1706=2,76764
37,25	-0.00508	=0,000 2 2	-6014 7432	-2054 1890	453 39859	172034 34812
37,50	-0,20254	=0,00027	-5381 5481	-2540 7804	664 76603	175644,16374
17 75	-0.00244	-0.00032	44774 4950	-2458 2924	444 89703	178944,58834盆量
24.00	+0,00240	•0,00036	-4199 2405	-2317 0200	438 41534	188734 41791 2 3
14 19	-0 00#34	+0 40060	-3943 6583	-2207 2470	431 79130	187902 54999 8
34 90	-0.00256	+0 00043	-9118 6139	-2079 2577	425 52934	192117,799240
14 75	-0 00209	-0 00044	-2620 2796	-1993 3372	414 17204	197834 11989 8
∌∳ุ้อก	40 30198	-0 00040	+2147 8397	-1889 7594	*\$4 38220	444000,00000
र्ज ∳े 25	-0,00185	+0 00000	-1739 1700	-1650 6788	896 79169	484040_00000
3 Ø \$ 6	*******	-6 00092	-1374 9498	-1686 6809	#35 1\$200 ¹	484090,00000
6	1 •	3 •	1 . 1		•	•

454000	,00000
484000	.00000
484000	بر دوووو.
	· &

PACHETHAR	PUSPAHA	COLSARENNE	49 a 241 25 W

-9 90159

#9 00146

-9 53133

-0 00114

-0,00105

-0 00041

-0 00077

-0.00063

-0,00049

-0,00035

-0,00024

*0,00007

0.00007

ступино нагрузки кн

34 75

.0.00

40.23

49 50

49 75

41,00

41.25

41.57

41,75

44.00

42.25

*2.50

.2 75

DEPENEURHRE & TOAKE DENADMENUR CHAM W

+1079 1266

-636 9766

-294 1460

4173 9821

-117,3448

-44,1589

-30.0106

-10,7486

-4,1773

0,0060

0.0000

-1217 4929

-1026 7361

-867 9317

-447 5350

-563 7293

-414 -676

-304 3814

-212.9912

-134,5133

-74,9661

-34,3454

-8,7090

0.0000

771 43503

707 20978

441,58444

575 22240

508,32690

441 04413

373 54127

305.91179

238,14090

170.41074

102,62540

34,83414

-32,99355

0.10242
0,21467
0,32943
0.6472
0,54628

-0 00053

+0,00054

-0,00055

*0 00055

-0,00055

-0,00054

#0,000\$**4**

0.0005

-0.00054

mo,00056

-0,00056

-0,00056

-0,00054

ЭНЕРГОПОГЛОЧАЮЩАЯ СПОСОВНОСТЬ 38% 443,901829КАЖ

приложение 7

484040,00000

484040,00000

484000 000000

484040 00000

484040,00000

484000 00000

484090.00000

484000,00000

444040 00000

ABAED POCO-HOCT chōcosñoc SEAR VARA Kogpanhava' KOOPANATA ZYTH. d'KH' 27845,090 31580,827 1987,041 1987,041 18,250 0,00 727868 306 731304 349 18,250 15678,370 20,500 18,25 20,500 2 =3084 7391 3 20.50 26,800 30 520 +6285 799' 30,250 30 25 31380 727 15478 370 33,000 34,000 38,000 38,00 £ 1 1 ŧ

TABANUA &

приложение 8

ПЕРЕЧЕНЬ ЗАИМСТВОВАННЫХ НОРМАТИВНО-ТЕХНИЧЕСКИХ ДОКУМЕНТОВ

СНыП П-51-74	Гицротехнические сооружения морские.						
	Основные положения проектирования.						
CHn II 11-50-74	Гидротехнические сооружения речные.						
	Основные положения проектирования.						
СНиП П-16-76	Основания гипротехнических сооружений.						
СНий п-57-75	Нагрузки и воздействия на гидротехнические						
	сооружения (волновые, ледовые, и от судов).						
СН⊞П П-В.3-72	Стальные конструкция. Нормы проектирования.						
СниП П-17-77	Свайные фундаменты.						
CH#II II-56-77	Бетонные и железобетонные конструкции гидротех-						
	нических сооругений.						
II 58-76	Руководство по определению нагрузок и воздейст-						
BHNHI	вый на гыдротехническые сооружения (волновых,						
	ледовых и от судов).						
BCH 3-80	Инструкция по проектированию морских причальных						
Ж инморфл от	сооружений.						
BHTH OI-78	Нормы технологического проектирования морских						
Мин морфл от	портов.						

СОДЕРКАНИЕ

I.	ОБЩИЕ	поло	KEHM?			•	•	•		•	•	•	•	•	•	•	•	•	•	•	I
2.	PEKON	EHILAL	OII NIN	КО	MIIC	HO	BKE	П	РИЧ	AJI I	Нь	ΙX	CC	OP	У	E	W	t	0		
	CTEPE	HEBUN	LAII N	AMM		•	•	•		•		•	•	•	•		•	•	•		2
3.	PACTE	т пал	OB .	•			•			•	•	•	•	•	•	•	•	•		•	4
	3.I.	Общие	указ	ани	я.		•			•		•			•	•	•			•	4
	3.2.	lleaps	овные	na	лы	•	•			•		•			•	•		•	•		6
	3.3.	Ordoi	іные І	ыкв	•	•	•			•		•	•	•	•	•	•	•	•	•	14
4.	PEKON	ЕНДАІ	MN IIC	КО	нст	РŊ	IP C	BA	HMC	C	CE	H	F.	ЫХ	. 1	LAJ	IOE	3.			25
IIPI	ANO KE	WE I.	Конс	тру	KTE	ВН	ie	cx	емы	C	rej)AF	(ee	ых	. 11	aı	OE	١.	•		2 9
ΠРІ	MIOEE	ME 2.	Am	PET	M I	ac	qe 1	a	шва	pro	BE	ШΧ		رها	OE	٠.		,	•		35
IIPI	MOEE	WE 3.	Алго	PMT	M I	ac	qe 1	a	ord	ой	Ю	CI	a	OE	٠.	•	•	•	•	•	53
IIPI	MIOEE	WE 4.	Прод	рам	Ma	pa	े प् र	ra	ш	ap:	roi	ЭНЬ	X	па	JIO	B	CI	pa	BC	UH C	e) 6I
IIPI	MORE	ИE 5.	Прог	рам	Ma	pa	. प्र	Ta	OT	бoi	ÌН	ΙX	па	UTO	e(CI	ıpa	Œ	ЧE	roe)	7 9
IIPI	MOKE	WE 6.	Прим	ep	pac	qe:	ra	шв	арт	OBI	101	0	118	LJI8	(c	:n <u>r</u>	BE	305	HC	e)	88
IIPI	MIONE	WE 7.	При	e p	pac	eqe:	ra	OT	бой	ноз	ro	ne	ЛЕ	1 (CI	ıpε	BC	YF	IOE	;)	II5
IIP	MIORE	ME 8.	Пере	чен	F S	an	MCT	B0	ван	HOL	K I	ĮO.	Ma	T	BH	[O-	Te	X	Œ-	•	
			чесі	OEX.	дон	ζум	энт	OB	(c	пра	a.B	IPC	106	;)							129

РУКОВОДСТВО ПО РАСЧЕТУ СТЕРЖНЕВЫХ ПАЛОВ РД 31.31,22-81

Центральное рекламно-информационное агентство (ЦРИА "Морфлот")

Ответственный за выпуск С.Н.Курочкин Редектор Э.А. Андреева

Подписано в печать 09.11.81.Л88565, Формет 60х84/16. Печать офсетная, Усл.печ.п.7,67. Уч.-мэд.л. 4,77.Печ.л.8,25.Тираж330.Заказ 950, Бесплатно.