1 - 94/30

КОМПЕНСАТОРЫ СИЛЬФОННЫЕ МЕТАЛЛИЧЕСКИЕ ДЛЯ ТРУБОПРОВОДОВ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ И ТЕПЛОВЫХ СЕТЕЙ.

ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Издание официальное

Предисловие

- 1 РАЗРАБОТАН И ВНЕСЕН специальным конструкторско-технологическим бюро «Компенсатор» и Всероссийским научно-исследовательским институтом стандартизации (ВНИИстандарт) Госстандарта России
- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 6.06.94 № 163
- 3 Учтены требования международных стандартов JISB 2352—1977 «Компенсаторы сильфонные трубопроводные» DIN 30681—74 «Компенсаторы для газовых установок. Стальные сильфонные компенсаторы» BS 6129—81 «Соединения сильфонные гофрированные для пневмосистем. Ч1. Металлические сильфонные гофрированные сое-
- 4 ВВЕДЕН ВПЕРВЫЕ

динения»

С Издательство стандартов, 1994

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

СОДЕРЖАНИЕ

1	Область применения					٠						1
	Нормативные ссылки											
3	Обозначения и сокращ	кинэ										2
	Типы и основные парах											
	Требования надежность											
	Требования стойкости к											
7	Требования безопасность	1 .			•			-				32
8	Требования охраны приј	юды										33
9	Требования транспортаб	ельн	ЭСТІ	i								33
1) Требования стандартиза	ацип	11	уни	фик	аци	l					33
1.1	Требования техпологич	HOCTI	Į									33
12	: Конструктивные требов	ання						•				33
Π	риложение А											36

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПЕНСАТОРЫ СИЛЬФОННЫЕ МЕТАЛЛИЧЕСКИЕ ДЛЯ ТРУБОПРОВОДОВ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ И ТЕПЛОВЫХ СЕТЕЙ

Гины, основные параметры и общие технические гребования

Metal bellows expansion joints for the pipelines of electric power stations and heat-supply systems Types, basic papameters and general technical requirements

Дага введения 1995-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на металлические сильфонные компенсаторы (далее — компенсаторы), предназначенные для герметичного соединения перемещающихся элементов трубопроводов электрических станций и тепловых сетей.

Безопасность и сохранение окружающей среды обеспечивается выполнением требований, установленных пунктами 5.2, 6.1, 7.1—7.5, 12.5, 12.6 и разделом 8.

Стандарт не распространяется на компенсаторы, предназначенные для магистральных нефтенроводов и газопроводов.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы есылки на следующие стандарты:

ГОСТ 12.2.003—91 Спетема стандартов безопасности труда

(ССБТ). Общие требования безопасности.

ГОСТ 12.3.003 - 86 ССБТ. Работы электросварочные. Общие требования безопасности.

ГОСТ 12.3.025--80 ССБТ. Обработка металлов резаинем.

ГОСТ 356--80 Арматура и детали грубопроводов. Давления условные, пробиые и рабочие Ряды.

ГОСТ 380-88 Сталь углеродистая обыкновенного качества.

Марки.

ГОСТ 4543—71 Прокат из легированной конструкционной стали. Технические условия.

ГОСТ 5632—72 Стали высоколегированные и сплавы коррознонно-стойкие, жаростойкие и жаропрочные. Марки.

ГОСТ 10704—91 Трубы стальные электросварочные прямошов-

ные. Сортамент.

ГОСТ 12815—80 Фланцы арматуры, соединительных частей и трубопроводов на Ру от 0.1 до 20,0 МПа (от 1 до 200 кгс/см²). Типы. Присоединительные размеры и размеры уплотнительных поверхностей.

ГОСТ 14771—76 Дуговая сварка в защитном газе. Соединения

сварные. Основные типы, конструктивные элементы и размеры.

ГОСТ 15150—69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов.

Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

ГОСТ 1050—88 Прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструктивной стали. Общие технические условия.

ГОСТ 20072—74 Сталь теплоустойчивая. Технические условия.

ГОСТ 23170—78 Упаковка для изделий машиностроения. Общие требования.

ГОСТ 25756—83 Компенсаторы и уплотнения сильфонные. Тер-

мины и определения.

ГОСТ 27036—86 Компенсаторы и уплотнения сильфонные металлические. Общие технические условия.

ГОСТ 28697—90 Программа и методика испытаний сильфонных

компенсаторов и уплотнений. Общие требования.

ГОСТ Р 50392—92 Арматура для компенсаторов и уплотнений спльфопных металлических. Типы, основные параметры п размеры. Общие технические требования.

3 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

Перечень обозначений, применяемых в данном стандарте:

L — длипа сильфонного компенсатора,

D — наружный диаметр присоединительного патрубка,

 D_1 — днаметр расположения присоединительных отверстий,

d — днаметр присосдинительных отверстий,

 d_1 — внутренний диаметр сильфонного компенсатора,

п — количество присоединительных отверстий,

II — габаритный размер сильфонного компенсатора,

*D*Л' — условный проход сильфонного компенсатора,

PN — условное давление сильфонного компенсатора,

 $\lambda - 1$ — симметричный осевой ход (\pm) ,

 $\gamma-1$ — симметричный угловой ход (\pm) , $\delta-1$ — симметричный сдвиг (\pm) .

4 ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ

- 4.1 Типы, основные параметры и базовые размеры должны отражаться в технических заданиях на проектирование и в пормативно-технической документации на продукцию в порядке, установленном настоящим стандартом.
- 1.2 Компенсаторы должны иметь минимально возможные жесткость и коэффициент местного сопротивления среды, протекающей через изделие. Численные значения жесткости, эффективной площади и допустимая величина отклонения при различных перемещениях (сжатие—растяжение, сдвиг, поворот), а также величина коэффициента местного сопротивления должны быть указаны в пормативно-технической документации на продукцию.

1.3 Амплитуды перемещений должны обеспечивать необходимую наработку и вероятность безотказной работы.

Зависимость величины наработки от амилитуд перемещений, равно как и зависимость амилитуд перемещений от наработки, должна устанавливаться в технических условиях на продукцию. В технических условиях на продукцию могут быть установлены несколько значений наработки и несколько значений соответствующих им амплитуд перемещений и (или) приведена их графическая зависимость.

- 1.4 Срок службы и срок сохраняемости изделий до ввода в эксплуатацию устанавливаются разработчиком в зависимости от условий эксплуатации и степени воздействия нагрузок на изделия, но не менее установленного в 5.1.
- 1.5 На базе приведенных в стандарте типов компенсаторов (таблица 1) и исполнений (рисунки 1—8) могут быть разработаны другие типы и исполнения в зависимости от показателей назначения, предусмотренных техническим заданием, с приведенными в стандарте характеристиками или превышающими их. Базовые размеры компенсаторов установлены в таблицах 2—9, рисунки 1—8 устанавливают составные части изделий, не определяя их конструкцию.

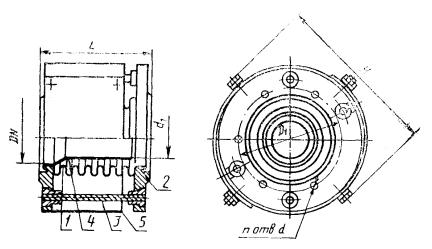
Таблица 1. Типы и основные параметры компенсаторов

		1							<u> </u>		-	****	<u> </u>				
Номер	таб- лицы		- 23	i 			က				4				ಬ		
	рисун						2				က	•			4,		
	Скорость среды, м/с, не более	ο̈́δ	1120	80	120	8	120	8	1.20	∞	120	8	120	8	120	∞	120
	Температура проводимой среды, С		70 + 560	Or —50	70 + 300		096+ or	Or —50	10 +300		000+ 01	0r - 50	70 + 300		09¢+ or	Or50	
	Проводим ая среда	Жилкость	Газ	Жидкость	Газ	Жидкость	Fa3	Жидкость	<u> Fa</u> 3	Жидкость	Газ	Жилкость	Газ	Жильость	Газ	Жилкость	Газ
	<i>PN</i> , МПа (hrc/cм²)		1,0(1,0)—	-2,5(25)			1,0(1.0)—	-6,3(63)			1,0(10),	1,6(16)			1,0(10)—	(6,3(65)	
	Д√. мм		65—500				50-500				65500				50- 500		
91	Меполиени	01	0.5	03	04	21	22	23	24	0.1	0.5	03	04	21	22	23	24
	Наименование Компенсатор сдвиговой фланцевый			Компенсатор	сдвиговой под приварку	3		Компенсатор	поворотный фланцевый	,		Компенсатор	поворотный под приварку	•			
	пнТ				K001						-	 	K010				

Продолжение таблицы 1

4														
Номер	та6- лицы			9				<u>-</u>				∞		
	рис ^у н ка			ಬ				့				7		
	Скорость среды м/с не ботее	&	120	∞	120	∞	120	∞	120	∞	120	∞	120	
	Температура проводимон среды С	Or —60	000+ 01	Or50	10 + 000	$O_{\rm T} = 60$		От —50	10 + 300	Or —60	1000	$0_{1} - 50$	£ 5 } } }	
	Проводим <i>ая</i> среда	Жилкость	Fa3	Жилкость	Газ	Жилкость	Газ	Жилкосгь	Газ	Жидкость	Γa ;	Житкость	Fa 3	
	РV, МПа (кгс/см²)		0.25(25)			1	(60)6,0	-(63(6,3)-	2,5(25)			0,25(2,5)—	-2,5(25)	
	ДМ, ММ		65-500			50-500		600—2200				65- 500		
 aı	инэнголи[01	0.5	03	04	21	22	23	24	01	02	03	04	
	Наименование	Компенсатор	осствои фланцевый			Компенсатор	осевои под приварьу			Компенсатор	у ниверсальный флапце вый			
	ии I К 100 ж Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф											Υ		

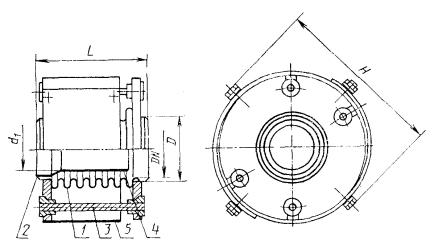
Окончание таблицы 1


					
Номер	таб- лицы			6	
	рису н. ка			∞	
	Скорость среды, м/с, не более	∞	120	%	120
	Температура проводимой среды. С	$\begin{array}{c c} Or -60 \\ \hline \end{array}$	200	Οτ50	70 + 300
	Проводимая среда	Жидкость	<u> Fa</u> 3	Жидкость	Fa ₃
	PN, MHa (Krc/cm²)	0,63(6,3)—	(00)00	0,63(6,3)	$\begin{bmatrix} -2,5(25) \\ 1 \end{bmatrix}$
	Д.У., мм	50—500		600-1400	
91	Исполнени	2.1	22.	23	24
	Наименование	Компенсатор			
			K111		

Примечания

1. На рисунках 1-- в приведены компенсаторы, применяемые для газообразных сред, компенсаторы для жидких сред не имеют направляющего патрубка, в остальном аналогичны, приведенным на рисунках 1-8.

2. Под термином «жилкости и газы» следует понимать данное состояние любого вещества, не вызывающего коррозию материала внутренней полости (наружной поверхности) компенсаторов. Из проводимых и окружаюших сред не должны выпалать в осалок и накапливаться между стенками гофров твердые частицы, препятствующие перемещению гофров.


Тип К001 Исполнение 02, 04

I- сильфон; 2- фланец; 3- ограничительная стяжка; 4- направляющий патрубок; 5- кожух

Рисунок 1

Тип К001 Исполнение 22, 24

7 — сильфон; 2 — присоединительный патрубок; 3 — ограничительная стяжка; 4 — направляющий патрубок; 5 — кожух

Рисунок 2

ΓΟCT P 50671-94

Таблица 2. Базовые размеры компенсаторов тип K001, исполнение 01—04 мм

DN	PN. MHa (Krc/cm²)	Н, не болес	L, не более	d_1 , не менее	Амплитуда сдвига 61 но менес
65	1,0 (10); 1,6 (16)	235	225	50	10
	2,5 (25) 1,0 (10);	245			
80	2,5 (25)		210	60	
100	1,0 (10)	255		8()	
	1,6 (16); 2,5 (25); 1,0 (10)	275	230	· · · · · · · · · · · · · · · · · · ·	
125	1,6 (16)	280		105	
	2,5 (25); 1,0 (10)	300	270		7
150	1,6 (16)	310		130	
900	2,5 (25) 1,0 (10)	335	275	100	
200	1,6 (16)	385	305	160	
	1,0 (10)	435	280		
250	1,6 (16) 2,5 (25)	500	315 325	210	
	2,0 (20)				

Окончание таблицы 2

MM

D N	PN, МПа (кге/см²)	И. не более	L, не более	d ₁ , не менее	Амилитуда едвига 6 —1 не менее
300	1,0 (10); 1,6 (16)	495	300 315	260	
	2,5 (25); 1,0 (10)	545	335 310		
350	1,6 (16)	580	340	310	
	2,5 (25)	610	365		
400	1.0 (10)	595	325		7
100	1.6 (16)	640	370	360	
	2,5 (25)	665	390		
450	1,0 (10)	730	420	425	
	1,6 (16)	740	405	420	
500	1,0 (10)	780	460	480	
	1,6 (16)	800	390	400	

Таблица 3. Базовые размеры компенсаторов тип K001, исполнение 21-24 мм

DN	<i>PN</i> . МПа (кгс/см²)	И. не более	L. не более	<i>d</i> ;, не менее	Амплитуда сдвига б —1 не менее
50	1,0 (10); 1,6 (16); 2,5 (25)	200	255	45	5
	4,0 (40); 6,3 (63)	220	230		

Продолжение заблицы 3

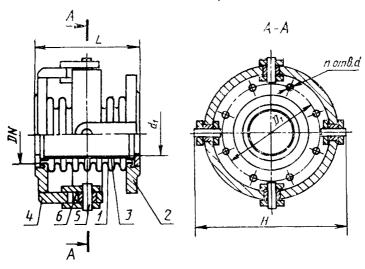
мМ

DN	PA. МПа (кгс/см²)	И, пе более	<i>L</i> , не более	d ₁ . не менес	Амплигуда сдвига б —1 не менее
	1,0 (10); 1,6 (16)	235	255	50	,
65	2,5 (25); 4,0 (40); 6,3 (63)	24 5	***************************************	<i>O</i> (1	
	1,0 (10); 1.6 (16)		250	60	
80	2,5 (25); 4,0 (40); 6,3 (63)	255			
	1,0 (10)				
100	1,6 (16); 2,5 (25); 4,0 (40); 6,3 (63)	275	260	85	
	1,0 (10)	275	2 6 0		7
125	1,6 (16)	280		105	
	2,5 (25);		300		
	4,0 (40); 6,3 (63)	300	320		
	1,0 (10)				
150	1,6 (16)	310	305	135	
	2,5 (25)	335			
	4,0 (40); 6,3 (63)	380	350		
	1,0 (10)		270		
200	1,6 (16)	385	335	160	

M M

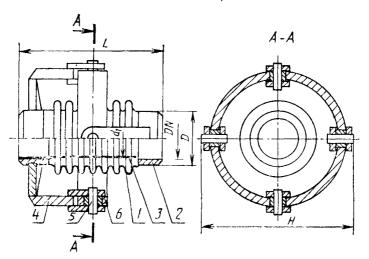
DN	PN, МПа (кгс/см²)	И. не более	L. не более	d 1, не менее	Амилитуда едвига б —1 не менее
900	2,5 (25)	420	345	160	
200	4,0 (40); 6,3 (63)	440	4()()	100	
	1,0 (10)	435	310		
	1,6 (16)	440	345		
250	2,5 (25)	500	355	210	
	4,0 (40); 6,3 (63)	525	460		
000	1,0 (10); 1,6 (16)	495	330 345	200	
300	2,5 (25); 4,0 (40); 6,3 (63)	545	480	260	
	1,0 (10)	545	480		7
	1,6 (16)	580	370		
350	2,5 (25)	610	395	310	
	4,0 (40); 6,3 (63)	635	480		
	1,0 (10)	595	355		
400	1,6 (16)	640	400	000	
400	2,5 (25)	665	420	360	
	4,0 (40); 6,3 (63)	700	500		

Окончание таблицы 3


ΜМ

DN	<i>PN</i> , МПа (кгс/см²)	<i>Н,</i> не более	<i>L,</i> не более	d _i , не менее	Амплитуда сдвига д1 не менее
	1,0 (10)	730	450		
450	1,6 (16)	740	435	425	i
	2,5 (25); 4,0 (40); 6,3 (63)	780	520		7
	1,0 (10)	790	490		
500	1,6 (16)	800	420	480	
	2,5 (25); 4,0 (40); 6,3 (63)	850	650		

Пример условного обозначения фланцевого сдвигового компенсатора, типа K001, исполнения 03 на условное давление 1,6 МПа (16 кгс/см²) с условным проходом 200 мм:


Компенсатор К001.03—16—200 ГОСТ Р 50671—94

Тип К010 Исполнение 02, 04

1-сильфон; 2-фланец; 3-направляющий патрубок; 4-вилка; 5-налец; 6-карданное кольцо Рисунок 3

Тип **К010** Исполнение 22, 24

1 — сильфон; 2 — присоединительный патрубок; 3 — направляющий патрубок; 4 — вилка; 5 — палец; 6 — карданное кольцо

Рисунок 4

Таблица 4 Базовые размеры компенсаторов тип K010, исполнение 01—04 мм

MM										
DN	<i>PN</i> , МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не более	d ₁, не менее	Амплитуда поворота у — I не менее					
65	1,0 (10)	235	215	50						
	1,6 (16)	045	225							
80	1,0 (10)	245	200	60						
	1,6 (16)	260	215							
100	1,0 (10)	265	200	85						
	1,6 (16)	280	245							
125	1,0_(10)	290	220	105						
	1,6 (16)	305	235							
150	1,0 (10)	335	225	130						
	1,6 (16)	340	240							
200	1,0_(10)	410		160						
	1,6 (16)	425	295	100	40.0					
250	1,0 (10)	490	280	210	10°					
	1,6 (16)	530	305							
300	1,0_(10)	555	300	260						
	1,6 (16)	585	210							
350	1,0 (10)	635	310	310						
	1,6 (16)	660	360							
400	1,0 (10)	720	325	360						
700	1,6 (16)	745	390							
450	1,0 (10)	805	430	425						
100	1,6 (16)	835	455							
500	1,0 (10)	865 965	495	480						
]	1,6 (16)	909	470		1					

Таблица 5. Базовые размеры компенсаторов тип K010, исполнение 21—24 мм

			ММ		
DN	<i>PN</i> , МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не более	<i>d</i> 1, не менее	Амплитуда поворота у —1 не менее
50	1,0 (10) 1,6 (16); 2,5 (25)	205 220	230	45	7°
	4,0 (40); 6,3 (63)	235	240		
	1,0 (10)		245		
65	1,6 (16); 2,5 (25); 4,0 (40); 6,3 (63)	245	2 55	50	
	1,0 (10)		-		
80	1,6 (16)	260		60	
	2,5 (25); 4,0 (40); 6,3 (63)	270	260		
100	1,0 (10)	280	265	85	10°
	2,5 (25); 4,0 (40); 6,3 (63)	290			
	1,0 (10)				
125	1,6 (16)	305	270	105	
	2,5 (25); 4,0 (40); 6,3 (63)	335			

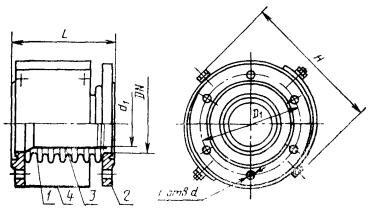
ГОСТ Р 50671—94

Продолжение таблицы 5

ММ

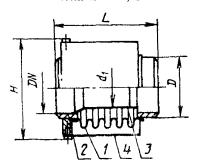
			ММ		
DN	<i>PN</i> , МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не более	d ₁, не менее	Амплигуда поворота у —1 не менее
	1,0 (10)	335			·
150	1,6 (16)	340	280	130	
	2,5 (25); 4,0 (40); 6,3 (63)	355	200		
	1,0 (10)	410		į	
200	1,6 (16)	4 25	330	160	
	2,5 (25); 4,0 (40); 6,3 (63)	490	335		
	1,0 (10)				
250	1,6 (16)	530		210	10°
	2,5 (25); 4,0 (40); 6,3 (63)	560	340		
	1,0 (10)				
300	1,6 (16)	585	!	260	
	2,5 (25); 4,0 (40); 6,3 (63)	635	350		
	1,0 (10)				
350	1,6 (16)	660	390	310	
	2,5 (25); 4,0 (40); 6,3 (63)	720	400		

Окончание таблицы 5


MM

DN	<i>PN</i> , МПа (кгс/см²)	<i>Н</i> , не более	L, не более	d ₁ , не менее	Амплитуда поворотаγ—1 не менее
	1,0 (10)	720	400		
400	1,6 (16)	745	420	360	
	2,5 (25); 4,0 (40); 6,3 (63)	805	460		
450	1,6 (16)	835		425	10°
	2,5 (25); 4,0 (40); 6,3 (63)	865	470		
	1,0 (10)				
500	1,6 (16)	965	480	480	
	2,5 (25); 4,0 (40); 6,3 (63)	1000			

Пример условного обозначения поворотного компенсатора под приварку, типа K010, исполнения 22 на условное давление 1,0 МПа ($10~{\rm krc/cm^2}$) с условным проходом $150~{\rm mm}$:


Компенсатор К010.22—10—150 ГОСТ Р 50671—94

Тип К100 Исполнение 02, 04

1- сильфон; 2- фланец; 3- направляющий патрубок; 4- кожух Рисунок 5

Тип К100 Исполнение 22, 24

I — сильфон; 2 — присоединительный патрубок; 3 — направляющий патрубок; 4 — кожух

Рисунок 6

Таблица 6. Базовые размеры компенсаторов тип K100, исполнение 01--04 $_{\rm MM}$

			MM			
DN	PN МПа (кіс/см²)	И. не более	L, не болес	d_1 , не менее	Амилитуда хо да λ-1 не менее	
65	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	205	255	50	30	
80	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	220		60	30	
100	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	240	215	85	25	
125	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	260	235	105	35	
150	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	290	040	130	40	
20 0	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	345	240	160	45	
07.0	0,25 (2,5); 0,63 (6,3)	400	000	ôu o		
250	1,0 (10); 1,6 (16); 2,5 (25)	415	280	2110	55	

FOCT P 50671-94

Окончание таблицы 6

мм

DN	<i>PN</i> , МПа (кгс/см²)	<i>И.</i> не более	L, не более	$oldsymbol{d}_1,$ he menee	Амп.јитуда хода λ—1
					не менее
200	0,25 (2,5); 0,63 (6,3)	465	905	560	C.E.
300	1,0 (10); 1,6 (16)	470	295	260	65
	2,5 (25)				
350	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	515	305	310	75
	0,25 (2,5); 0,63 (6.3)	565			
400	1,0 (10); 1,6 (16); 2,5 (25)	580	325 360		80
	0,25 (2,5); 0,63 (6,3)	615			
450	1,0 (10); 1,6 (16); 2,5 (25)	635	400	425	85
	0,25 (2,5); 0,63 (6,3)	670			
500	1,0 (10); 1,6 (16), 2,5 (25)	685	440	480	

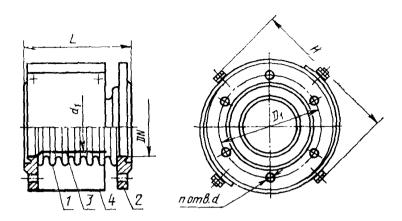
Таблица 7. Базовые размеры компенсаторов тип K100, исполнение 21—24 мм

		(1	им		1
DN	PN. МПа (кгс/см²)	<i>Н</i> , не более	L, не более	<i>d</i> ₁ , не менее	Амплитуда хода λ—1 нс менее
50	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	190	240	45	20
	4,0 (40); 6,3 (63)	200			
65	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	210		50	
	4,0 (40); 6,3 (63)	220	255		30
80	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	2 2 5		60	
	4,0 (40); 6,3 (63)	235			
100	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	225	26 0	85	35
	4,0 (40); 6,3 (63)	240			
105	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	250	270	105	35
125	4,0 (40); 6,3 (63)	260	210		•
ļ	(!	ļ .	'	1

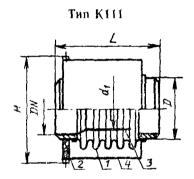
Продолжение таблицы 7

MM

DN	РА МПа (кі с/см²)	И, не более	<i>L.</i> не более	<i>d</i> 1, не менее	Амплитуда хода λ —1 не менее
150	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	27 5	270	135	40
	4,0 (40); 6,3 (63)	300			
200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	345	290	160	45
	4,0 (40); 6,3 (63)	380			
250	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	400	310	210	55
	4,0 (40); 6,3 (63)	430	325		
300	0,63 (6,3); 1,0 (10), 1,6 (16); 2,5 (25)	465	310	260	65
	4,0 (40); 6,3 (63)	500			
350	0,63 (63); 1,0 (10); 1,6 (16); 2,5 (25)	515	325	310	75
	4,0 (40); 6,3 (63)	530	350		
Į.	[Į.	Į	{


	 	, 	**************************************		,	
DN	<i>PN</i> , МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не более	d ₁ , не менее	Амплитуда хода λ—1 не менее	
400	0,63 (6,3); 1,0 (10), 1,6 (16); 2,5 (25)	565	350	360	80	
	4,0 (40); 6,3 (63)	600	375			
450	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	635	390	410	85	
	4,0 (40); 6,3 (63)	650	400			
500	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	685	440	460	85	
	4,0 (40); 6,3 (63)	700	445			
600	0,63 (6,3) 1,0 (10); 1,6 (16); 2,5 (25)	765	450	575		
700	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	875		680	90	
800	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	980	455	775		

Продолжение таблицы 7


MM

DN	PN. МПа (кгс/см²)	И. не более	L, не более	d 1, не менее	Амилитуда хода А - 1 пе менее
900	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25);	1090	4 55	875	90
1000	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1205		980	95
1200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1420	47()	1180	
1400	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1640	460	1385	
1600	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1860	500	1580	
1800	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	2060	520	1780	100
2000	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	2260	550	1960	
2200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	2460	600	2160	

Тип K111 Исполнение 02, 04

I — сильфон; 2 — фланец; 3 — направляющий патрубок; 4 — кожух Рисунок 7

1 — сильфон; 2 — присоединительный патрубок; 3 — направляющий патрубок; 4 — кожух

Рисунок 8

FOCT P 50671-94

Таблица 8. Базовые размеры компенсаторов тип К111, исполнение 01---04 мм

					Ампан	ттуда, н	е менее
DN	PN, МПа (кгс/см²)	//, не более	<i>L</i> , не более	<i>d</i> ₁ , не менее	кода 2 - 1	сдвига 8 —1	поворота ў — 1
65	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	205	255	50			
80	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	220		60	15		
100	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	240	215	85		7	1.0 °
125	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	260	235	105			
150	0,25 (2,5); 0,63 (6,3); 1.0 (10); 1,6 (16); 2,5 (25)	290		130			
200	0,25 (2,5); 0,63 (6,3)	330	240	160			
200	1,0 (10); 1,6 (16); 2,5 (25)	345		100	20		
050	0,25 (2,5); 0,63 (6,3);	400		6.17			
250	1,0 (10); 1,6 (16); 2,5 (25)	415	280	210			

Окончание таблицы 8

MM

]		1	I Amila	нтуда.	пе менее
DN	PN. MHa (Kre/cm²)	H, L, d ₁ , не пе более менее	хода 2 —1	сдвига 8 - 1	поворска у 1		
	0,25 (2,5); 0,63 (6,3);	465					
300	1,0 (10); 1,6 (16); 2,5 (25)	470	295	260	-		
	$ \begin{array}{c c} 0,25 & (2,5); \\ 0,63 & (6,3) \end{array} $	515	305				
350)						
	0,25 (2,5); 0,63 (6,3)	565			30	7	10
400	1,0 (10); 1,6 (16); 2,5 (25)	580	325	360		•	
	0,25 (2,5); 0,63 (6,3)	615					
450 	1,0 (10); 1,6 (16); 2,5 (25)	635	400	425			
	0,25 (2,5); 0,63 (6,3)	670					
500	1,0 (10); 1,6 (16); 2,5 (25)	685	440	480			

FOCT P 50671-94

Таблица 9 Lазовые размеры компенсаторов тип K111, исполнение 21—24

		MM					не менее
DN	PN, MIIa (KIC/CM ²)	//, не бо тее	L, не более	d ₁ . не менее	Ами.и	едвига δ -1	поворота у – 1
50	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	190	240	45	10	5	7°
	4,0 (40); 6,3 (63);	200					
65	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	210		50			
	4,0 (40); 6,3 (63)	220	255				
80	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	225	200	60			
	4,0 (40); 6,3 (63)	235		·			
100	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	225	260	85	15	7	10°
	4,0 (40); 6,3 (63)	2 10	*				
125	0.63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	250	270	105			
	1,0 (40); 6,3 (63)	260	ωιv				

	{		-	{	Амили	итуда,	не менее
DN	PN, МПа (кгс/см²)	II. не более	L, не более	<i>d</i> ; , не менее	хода 2 — 1	едвига 81	поворота у —1
150	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25);	275	270	135			
	4,0 (40); 6,3 (63)	300			-		
200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	345	290	160	20		
	4,0 (40); 6,3 (63)	380	300				
250	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	400	310	210			
	4,0 (40); 6,3 (63)	430	325			7	10 %
300	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	465	310	260			
	4,0 (40); 6,3 (63)	500					
350	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	515	325	310	25		
	4,0 (40); 6,3 (63)	530	350				

	1		MM I]	Амплитуда.		не менее	
DN	РЛ. МПа (кгс/см²)	И, не более	<i>L</i> , не более	d₁, не менее	хода λ —1	сдвига δ —1	новорота у —1	
400	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	565	350	360				
	4,0 (40); 6,3 (63)	600	375		30	7	10°	
450	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	635	390	410				
	4,0 (40); 6,3 (63)	650	400					
500	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	685	440	460				
	4,0 (40); 6,3 (63)	700	445					
660	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	765	450	575				
700	0,63 (6,3); 1,0 (10); 4,6 (16); 2,5 (25)	875	455	680	35	6	9°	
800	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	980	4 55	775				
900	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1090		875	40	5	6 °	

DN	PN, МПа (кгс/см²)	Н, не более	<i>L</i> , не бо лее	d ₁ , не менее	Амплитуда, не менее		
					хода λ -1	сдвига 8—1	поворота у 1
1000	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1205	470	980			
			470		40	5	6°
1200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1420		1180			
1400	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1640	460	1385			4 °

5 ТРЕБОВАНИЯ НАДЕЖНОСТИ

- 5.1 Полный назначенный срок службы компенсаторов должен быть не менее 20 лет, срок сохраняемости до ввода в эксплуатацию не менее 5 лет.
- 5.2 Вероятность безотказной работы компенсаторов на любом из перемещений (сжатие—растяжение, сдвиг, поворот) для наработки, установленной в соответствии с пунктом 1.3 должна быть не менее 0,9 при условном давлении проводимой среды.
- 5.3 Правила приемки компенсаторов, программы и методики испытаний должны соответствовать требованиям ГОСТ 27036 и ГОСТ 28697

6 ТРЕБОВАНИЯ СТОЙКОСТИ К ВНЕШНИМ ВОЗДЕЙСТВИЯМ

6.1 Компенсаторы должны быть вибропрочными и ударостойкими.

Уровень вибропрочности по амплитуде виброускорения в контролируемом диапазоне частот, а также уровень ударостойкости по длительности импульса, направлению воздействия; количеству ударных воздействий и ударному ускорению устанавливаются разработчиком и согласовываются с заказчиком (основным потребителем).

Пример — компенсаторы должны быть вибропрочными в диапазоне частот от 5 до 60 Гц при амплитудах виброускорения не более 19,6 м/с². Компенсаторы должны быть ударостойкими при пятикратиом воздействии ударных нагрузок в продольном и поперечном направлениях с параметрами: ударное ускорение не более 981 м/с², длительность импульса не более 1—10 мс.

- 6.2 Компенсаторы должны сохранять технические характеристики после легазации и дезактивации.
- 6.3 Требования к компенсаторам в части воздействия климатических факторов впешней среды должны соответствовать ГОСТ 15150.
- 6.4 Монтаж компенсаторов, а также защита от коррозни в период монтажа и эксплуатации, должны производиться по монтажным чертежам трубопроводов, систем, механизмов в соответствии с требованиями пормативно-технической документации на монтаж и эксплуатацию.
- 6.5 На весь период монтажа компенсаторы следует защищать от механических повреждений и воздействий агрессивных сред.

7 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 7.1 Требования, обеспечивающие безопасность, должны быть указаны в нормативно-технической документации на продукцию.
- 7.2 При разработке конструкторской и пормативно-технической документации на продукцию должны обеспечиваться требования:
- «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды», утвержденных Госгортехнадзором 01.01.90;
- -- «Специальных условий поставки оборудования, приборов, материалов изделий для объектов атомной энергетики», Москва, 1987 г.:
- «Правил устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок», введенных в действие 01.01.90 Госком по надзору за безопасным ведением работ в атомной энергетике.
- 7.3 Разработчики и изготовители компенсаторов должны быть аттестованы Госгортехнадзором РФ.
- 7.4 При изготовлении компенсаторов должны соблюдаться требования ГОСТ 12.3.025, ГОСТ 12.2.003 и ГОСТ 12.3.003.
- 7.5 При монтаже и эксплуатации компенсаторов должны выполняться требования, установленные нормативно-технической документацией на объект применения компенсаторов.

8 ТРЕБОВАНИЯ ОХРАНЫ ПРИРОДЫ

Требования, обеспечивающие сохранение окружающей среды, должны быть указаны в нормативно-технической документации на продукцию.

9 ТРЕБОВАНИЯ ТРАНСПОРТАБЕЛЬНОСТИ

9.1 Компенсаторы, упакованные в тару, могут транспортироваться всеми видами транспорта в соответствии с общими требованиями и нормами, действующими на данном виде транспорта.

9.2 Условия транспортирования продукции — по ГОСТ 15150;

воздействие механических факторов по ГОСТ 23170.

10 ТРЕБОВАНИЯ СТАНДАРТИЗАЦИИ И УНИФИКАЦИИ

- 10.1 В конструкторской и нормативно-технической документации на компенсаторы должны применяться стандартизированные условные проходы (ГОСТ 27036), условные и пробные давления (ГОСТ 356), термины и определения (ГОСТ 25756).
- 10.2 В зависимости от показателей назначения и технических характеристик в конструкциях компенсаторов должны применяться многослойные и однослойные металлические сильфоны и арматура по ГОСТ Р 50392.

 Π римечание. Допускается применение специальных сильфонов и арматуры, удовлетворяющих требованиям, предъявляемым к сгандартизованным деталям.

11 ТРЕБОВАНИЯ ТЕХНОЛОГИЧНОСТИ

- 11.1 Конструкция сварных соединений должна обеспечивать возможность применения автоматической и полуавтоматической сварки и контроль качества сварных швов.
- 11.2 В конструкциях компенсаторов должны быть предусмотрены средства строновки для перегрузки и доставки изделий к месту монтажа.
 - 11.3 Защитные кожуха должны быть съемными.

12 КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

- 12.1 Компенсаторы должны быть разработаны в соответствии с требованиями настоящего стандарта.
- 12.2 Детали компенсаторов должны быть изготовлены из материалов, указанных в табл. 10.

Таблица 10

Наименование дегати	Магериа т	Исполнение компенсаторов	
Фланец	Сталь 08Х18Н10Т по ГОСТ 5632	0,1 02	
	Сталь 12МХ по ГОСТ 20072	03, 04	
Присоедини- гельный патрубок	Сталь 08Х18Н10Т по ГОСТ 5632	21, 22	
- Turpyook	Сталь 12МХ по ГОСТ 20072	23, 24	
Сильфон	Сталь 10Х171113М2Т по ГОСТ 5632	01, 02, 21, 22	
Challepon	Сталь 08Х18ППОТ по ГОСТ 5632	()3, ()4, 23, 24	
	Сталь 08КП по ГОСТ 1050		
Направляющий п а трубок	Сталь 08Х18Н10Т по ГОСТ 5632	02, 01, 22, 24	
Қарданное кольцо	Сталь 08Х18Н10Т по ГОСТ 5632	01, 02, 21, 22	
	Сталь 40Х по ГОСТ 4543	03, 04, 23, 24	
Вилка	Сталь 08Х18ППОТ по ГОСТ 5632	01, 02, 21, 22	
Вилка	Сталь 12МХ по ГОСТ 20072	03, 04, 23, 24	
Палец	Стать 40Х по ГОСТ 4543	33, 31, 20, 21	
Кожул	Сталь 3 по ГОСТ 380	Все исполнения	

Примечания

1 Допускается применение других материалов, обеспечивающих требования,

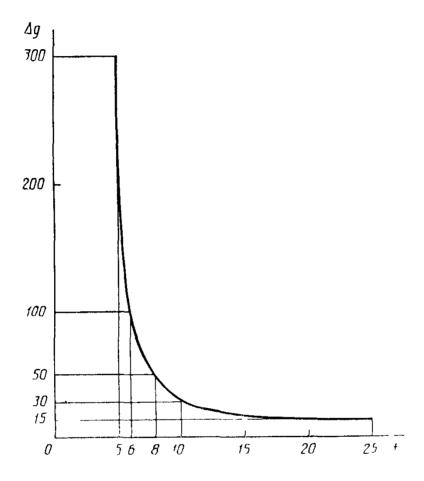
предъявляемые настоящим стандартом и Госгортехна гвором России

Зависимость сроков службы сильфонных компенсаторов от воздействия про-

водимой среды приведена в приложении А

12.3 Присоединительные патрубки компенсаторов должны иметь разделку кромки под сварку С-8 по ГОСТ 14771.

12.4 Присоединительные размеры фланцев (D_1, n, d) по ГОСТ


12815, присоединительных патрубков (D) по ГОСТ 10704.

² Возденствие химических элементов и соединский, содержанихся в проводимой и окружающей средах на детали и узды компенсаторов не должно снижать уровень надежности, если ожидаемое снижение не установлено и не отражено в техническом задании

12.5 Компенсаторы должны быть прочными при $P_{\rm nen}=1.5~{\rm P_y}.$ 12.6 Компенсаторы должны быть герметичными. Уровень герметичности устанавливается в конструкторской документации и технических условиях в зависимости от условий эксплуатации (проводимой среды).

Приложение **A** (рекомендуемое)

Сроки службы компенсаторов в зависимости от содержания хлоридов в сетевой воде

 Λg — содержание - сторидов в геплоносителе - мі/п, t — срок стужбы (ожидаемый)

УДК 629.12-56:006.354

П04

Ключевые слова: сильфонные компенсаторы, герметические соеди нения, трубопроводы электрических станций и тепловых сетей, ти пы, основные параметры, падежность, транспортабельность

ОКП 36 9574

Редактор А. Л. Владимиров Технический редактор В. Н. Прусакова Корректор Л. Я. Митрофанова

Сдано в набор 29.06.94. Подп. в печ. 17.04.94. Усл. печ. л. 2.56. Усл. кр.-отт. 2,56. Уч.-изд. л. 2,11. Тир. 427 экз. С 1581.