УГОЛЬ КАМЕННЫЙ И АНТРАЦИТ

МЕТОДЫ ПЕТРОГРАФИЧЕСКОГО АНАЛИЗА. Часть 1. СЛОВАРЬ ТЕРМИНОВ

Излание официальное

Предисловие

- 1 РАЗРАБОТАН МТК 179 «Уголь и продукты его переработки» ВНЕСЕН Госстандартом России
- 2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 6—94 от 21 октября 1994 г.)

Наименование государства	Наименование национального органа по стандартизации					
Азербайджанская Республика Республика Армения Республика Беларусь Республика Грузия Республика Казахстан Кыргызская Республика Республика Республика Республика Молдова	Азгосстандарт Армгосстандарт Белстандарт Грузстандарт Казгосстандарт Кыргызстандарт Молдовастандарт					
Российская Федерация Республика Узбекистан Украина	Госстандарт России Узгосстандарт Госстандарт Украины					

- 3 Настоящий стандарт представляет собой полный аутентичный текст ИСО 7404-1—84 «Уголь битуминозный и антрацит. Методы петрографического анализа. Часть 1. Терминология» с дополнительными требованиями, отражающими потребности народного хозяйства
- 4 ВЗАМЕН ГОСТ 9414—74 в части, касающейся номенклатуры мацералов, групп мацералов и минеральных включений, а также характеристики петрографического состава угля (разд. 1, приложение 1)
- 5 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 15.12.94 № 317 межгосударственный стандарт ГОСТ 9414.1—94 «Уголь каменный и антрацит. Методы петрографического анализа. Часть 1. Словарь терминов» введен в действие непосредственно в качестве государственного стандарта Российской Федерации с датой введения в действие с 1 января 1996 г.
 - © Издательство стандартов, 1995

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ГОСТ 9414.1-94

СОДЕРЖАНИЕ

	типов и кар	ооминер	итов						,		6
	Классификаци										_
3	Определения										3
2	Нормативные	ссылки		•							3
l	Назначение и	область	прим	иенени	я					•	2
	Введение .										1

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

УГОЛЬ КАМЕННЫЙ И АНТРАЦИТ

Методы петрографического анализа.

Часть I. Словарь терминов

Methods for the petrographic analysis of bituminous coal and anthracite. Part 1

Clossary of terms

Дата введения 1996-01-01

ВВЕДЕНИЕ

Петрографические анализы в международной практике имеют важное значение для решения вопросов генезиса, изменчивости угольных пластов в разрезе и по площади, их выдержанности, метаморфизма и использования угля. Международный комитет по петрологии угля (МКПУ) разработал рекомендации по номенклатуре и методам анализа и опубликовал обширный справочник с подробным описанием широкого круга углей.

Петрографический анализ индивидуального угля дает информацию о ранге (стадии метаморфизма), мацеральном и миролитотипном составе и распределении минерального вещества в угле. Показатель отражения витринита является надежной характеристикой ранга (стадии метаморфизма) угля, а распределение показателя отражения витринита для смеси углей вместе с групповым мацеральным анализом может дать информацию о ряде важных химических и технологических свойств смесей.

Настоящий стандарт применяют для характеристики каменных углей и антрацитов при их технологическом использовании. Он устанавливает систему петрографического анализа и включает 5 следующих частей:

Часть 1. Словарь терминов.

Часть 2. Метод подготовки образцов угля.

Часть 3. Метод определения групп мацералов.

Часть 4. Метод определения микролитотипного, карбоминеритного и минеритного состава.

Часть 5. Метод определения показателей отражения. Информация о номенклатуре и анализе бурых углей и лигнитов содержится в «Международном словаре по петрологии углей», опубликованном МКПУ*, а также в ГОСТ 12112.

Сложный состав углей, добываемых в мире в сочетании с разнообразием применения петрографии угля во всех отраслях, использующих угли, затрудняет составление всеобъемлющего перечня терминов.

Задача осложняется тем, что некоторые термины, требующие определений, имеют неодинаковые значения в различных национальных номенклатурах. Несколько общих терминов, таких как нальных номенклатурах. Несколько общих терминов, таких как битуминозный уголь, антрацит, бурый уголь, суббитуминозный уголь и лигнит, определены в стандарте относительно свободно, пока не решен вопрос о новой системе номенклатуры угля. Установленные стандартом определения предназначены для применения в общепринятых методах петрографического анализа каменного угля и антрацита, описанных в других частях настоящего стандарта. Петрографические термины, которые даны в словаре, — общеупотребительные термины, подходящие для многих стран.

В словарь не вошли такие понятия, как псевдовитринит и семиинертинит, так как они применяются лишь в нескольких странах. В случае применения какого-либо из терминов необходимо обращаться к соответствующему литературному источнику. Флуоресцентная микроскопия угля в данный стандарт не включена, так как она не отражена в методах анализа данного стандарта.

Дополнительные требования, отражающие потребности народного хозяйства, выделены курсивом.

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт описывает термины, которые применяют при мацеральном и микролитотипном анализах, выполняемых в белом свете, а также термины, связанные с определением показателя отражения витринита. Он применим к терминам, которые используют только при исследовании каменного угля или антрацита и не связаны с анализом суббитуминозного, бурого углей или лигнита. Предложенный словарь не является всеобъемлющим и не дает полных данных о всех компонентах угля. Дополнительные сведения можно получить из Международного справочника по петрологии

^{*} Второе издание (1963 г.) с приложениями, изданными в 1971 и 1973 гг.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12112-78 Угли бурые. Метод определения петрографи-

ческого состава

ГОСТ 17070—87 Угли. Термины и определения

ГОСТ 12113—94 Угли бурые, каменные, антрацит, твердые рассеянные органические вещества и углеродистые материалы. Метод определения показателей отражения

з ОПРЕДЕЛЕНИЯ

- 3.1 Общие термины
- 3.1.1 Уголь горючая осадочная порода, сформировавшаяся из подвергшихся изменениям остатков растений под давлением вышележащих слоев *осадочных пород*.

Примечание — Характеристики отдельных углей обусловлены различиями исходного материала, условиями накопления и степенью изменения, которое материал претерпел в его геологической истории, а также составом присутствующих примесей. Угли могут характеризоваться по мацеральному и микролитотипному составу и показателю отражения.

3.1.2 Углефикация — процесс, при котором отложившиеся уплотненные остатки растений превращаются в уголь.

Примечание — Этот процесс характеризуется увеличением содержания углерода и снижением выхода летучих веществ в растительных остатках в пересчете на сухое беззольное состояние. В процессе углефикации показатель отражения мацералов возрастает; показатель отражения витринита обычно используют для оценки степени углефикации или стадии метаморфизма.

- 3.1.3 Стадия метаморфизма положение угля в генетическом ряду бурый уголь антрацит (низкий высокий ранг), показывающее его зрелость на основе характеристики химических и физических свойств.
- 3.1.4 Бурый уголь и лигнит угли низкого ранга, характеризующиеся высоким содержанием связанной влаги, высоким выходом летучих веществ, низкой теплотой сгорания (менее 24 МДж/кг) и показателем отражения витринита (гуминита) менее 0,6%.

Примечание — В некоторых странах эти термины используют для обозначения всех углей низкого ранга до границы с битуминозными, в других странах часть углей этого диапазона, расположенных ближе к углям среднего ранга (т. е. более высокой части диапазона бурых углей), называют суббитуминозными, углями (приложение 1).

3.1.5 Суббитуминозный уголь — уголь, который в генетическом ряду непосредственно предшествует битуминозному углю (приложение 1).

- 3.1.6 *Каменный уголь* по ГОСТ 17070.
- 3.1.7 Битуминозный уголь уголь средней части генетического ряда.

Примечание — Витриниты всего диапазона битуминозных углей переходят в пластическое состояние и образуют кокс при нагревании выше 400°C (приложение 1).

3.1.8 Антрацит — уголь высокого ранга (конца генетического ряда) с низким выходом летучих веществ и полуметаллическим блеском.

Примечание — Антрациты не переходят в пластическое состсяние при нагревании.

- 3.2 Термины по оптической микроскопии
- 3.2.1 Показатель отражения отношение *интенсивности* светового потока, отраженного от полированной поверхности, *к интенсивности* нормально падающего светового потока на эту поверхность, выраженное в процентах.
- 3.2.2 Максимальный показатель отражения— наивысшее значение показателя отражения, определяемое в линейно поляризованном свете, при вращении предметного столика микроскопа.
- 3.2.3 Произвольный показатель отражения показатель отражения, определяемый в неполяризованном свете без вращения предметного столика микроскопа.

Примечание — Термин «произвольный показатель отражения» введен вместо терминов «средний показатель отражения» и «усредненный показатель отражения» во избежание путаницы вследствие толкования слов «средний» и «усредненный» в математическом понимании.

- 3.2.4 Паразитический показатель отражения выраженное в процентах количество падающего светового потока, попадающего на фотоумножитель вследствие отражения от периферийных областей линз и других отражающих поверхностей микроскопа.
- 3.2.5 Эталон показателя отражения стандартный образец с известным показателем отражения, полированная поверхность которого используется для калибровки аппаратуры, предназначенной для измерения показателя отражения.

Примечание — Необходимо, чтобы эталон показателя отражения соответствовал строгим требованиям относительно свойств материала, способа приготовления и установки. Эти требования подробно описаны в ГОСТ 12113.

3.2.6 Нулевой эталон — эталон, не отражающий свет, который применяется для калибровки аппаратуры, предназначенной для измерения показателя отражения.

Примечание — Подходящий нулевой эталон описан в ГОСТ 12113.

3.2.7 Аншлиф-брикет — твердый образец, изготовленный из частиц представительной пробы измельченного угля и связующего вещества, определенной формы, одна сторона которого отшлифована и отполирована.

3.2.8 Аншлиф-штуф — кусок угля, удобного для полирования и исследования под микроскопом размера. Одна из сторон образца. обычно перпендикулярная к плоскости наслоения, отшлифована и

отполирована.

3.3 Петрографические термины

3.3.1 Мацералы — различимые под микроскопом органические составляющие угля, аналогичные минералам неорганических пород, но отличающиеся от них тем, что мацералы не имеют характерной кристаллической формы и постоянного химического состава.

Примечание — Мацералы различают под микроскопом по таким свойствам, как показатель отражения, цвет, морфология, размер и твердость. Они образовались из остатков различных тканей растений. Их химические и физические свойства изменяются в процессе углефикации.

3.3.2 Субмацерал — подразделение мацерала, основанное на незначительных морфологических и физических различиях.

Примечание — Информация по характеристике отдельных мацералов, их групп и минеральных включений приведена в приложении 2, а также может быть получена из Международного справочника по петрологии углей.

3.3.3 Группа мацералов — объединяющий термин для мацералов, имеющих четко выраженные сходные свойства в отдельном угле определенной стадии метаморфизма (4.1).

3.3.4 Микролитотип — встречающийся в природе мацерал или сочетание мацералов в прослое с минимальной шириной 50 мкм

(4.2).

- 3.3.5 Минеральное вещество неорганическое вещество, которое ассоциировалось с органическим веществом угля во время его генезиса, последующей геологической истории, а также в процессе добычи и обогащения.
- 3.3.6 Минеральные включения минералы и их ассоциации, встречающиеся в угле.
- 3.3.7 Карбоминерит собирательный термин для сростков минералов с микролитотипами (4.3).
- 3.3.8 Минерит собирательный термин для сростков минералов с различными микролитотипами, где общее содержание минерального вещества составляет более 60 % (по объему). Этот термин также применяют в случае содержания сульфидных минералов более 20 %.

4 КЛАССИФИКАЦИЯ МАЦЕРАЛОВ, МИНЕРАЛЬНЫХ ВКЛЮЧЕНИЙ, МИКРОЛИТОТИПОВ И КАРБОМИНЕРИТОВ

4.1 Мацералы

Различают три или четыре группы мацералов: витринит, семивитринит*, липтинит (экзинит) и инертинит.

Группы мацералов и их подразделения приведены в таблице 1.

4.2 Микролитотины

Выделяют три группы микролитотипов: мономацеральные, бимацеральные и тримацеральные микролитотипы в зависимости от того, содержат ли они одну, две или три группы мацералов. Микролитотипы могут содержать не более 5 % (по объему) сульфидных минералов или 20 % (по объему) глинистых и других минералов в качестве примесей.

Номенклатура основных микролитотипов и их состав по группам мацералов приведены в таблице 2.

4.3 Карбоминериты

Различные типы карбоминерита приведены в таблице 3.

^{*} Группу мацералов семивитринита выделяют в самостоятельную группу при содержании ее в угле свыше 3 %.

Таблица 1 Группы мацералов, минеральных включений и их подразделения

Группа мацералов и минеральных включений	Мацерал	Субмацерал		
Витринит Vt	Телинит Vt: Коллинит Vta	Телинит 1 Телинит 2 Телоколлинит Гелоколлинит Десмоколлинит		
	Витродетринит Vtvd	Корпоколлинит		
Семивитринит Sv	Семителинит S _{vi} Семиколлинит S _{vk}			
Липтинит L (экзинит)	Споринит L _{sp} Кутинит L _{ht} Резинит L _r Суберинит* L _s Альгинит L _{al} Липтодетринит L _{td}			
Инертинит I	Микринит Imi Макринит Ima Семифюзинит Isf Фюзинит If Склеротинит Isk Инертодетринит Iia	Пирофюзинит Деградофюзинит		
Минеральные включения М	Глинистые минералы М ₈₁ Сульфиды железа М _в Карбонаты М _k Окислы кремния М _{kr} Прочие минеральные вклю- чения М _{pr}			

^{*} Встречается в каменных углях посткарбонового периода (пермских и более молодых).

Таблица 2

Классификация основных микролитотипов

Микролитотип	Состав по группам мацералов (при содер- жании не более 5 об. % минеральных включений)					
Мономацерал Витрит Липтит Инертит	Витринит Липтинит (экзинит) Инертинит					
Бимацерал* Кларит Дюрит Витринертит	Витринит+Липтинит Инертинит+Липтинит Витринит+Инертинит					
Тримацерал* Тримацерит	Витринит + Липтинит + Инертинит					

^{*} Для бимацеральных и тримацеральных микролитотипов доля отдельных групп мацералов должна быть более 5 % по объему в каждом случае.

Таблица 3 Типы и состав карбоминеритов

Тип	Объемный процент минералов					
Қарбаргиллит	20—60 глинистых минералов					
Қарбопирит	5—20 сульфидов					
Қарбанкерит	20—60 карбонатов					
Қарбосилицит	20—60 кварца					
Қарбополиминерит*	20—60 различных минералов					

^{*} Этот термин используют также для карбополиминерита с максимальным содержанием минерального вещества 5 % при условии, что сульфиды составляют существенную часть минерального вещества.

ПРИЛОЖЕНИЕ 1

Корреляция наиболее распространенных в мире систем подразделения генетического ряда углей на виды с системой, принятой в ГОСТ 25543—88

Показа- тель от- ражения	ГОС	T 25543-	88	Междун; фикация	ародная к 1, 1988	оди	ASTM, 388-84 1987				
витрини- та R_0 , %	Вид Угля	$Q_{ m S}^{aI}$, МДж/кг	V ^{daf} ,	Вид угля	\mathcal{Q}_{S}^{af} , МДж/кг	V ^{daf} ,	Вид угля	Q_{S}^{at} , МДж/кг	V ^{da1} ,		
0,2	δΙŽ		_	oro ra			Лигнит	Менее 19,3			
0,4 0,6	Бурый	Менее 24		Низкого	Менее 24		Субби- Туми- нозный	От 19,3 до 26,7			
0,8 1,0	ž			$\Gamma \Gamma =$			- - *	=			
1,2 1,4 1,6	Каменный			Среднего ранга			Битуминозный				
2,0				<u> </u>			┸ ┸ ┸		Св 8 до 14 включ		
2,2			Менее 8			_	Семиант-				
2,8 3,0 3,2 3,4 3,6	Антрацит			Высокого ранга			Антрациг		Менее или равно 8		

ПРИЛОЖЕНИЕ 2 (обязательное)

ХАРАКТЕРИСТИКА ПЕТРОГРАФИЧЕСКОГО СОСТАВА КАМЕННЫХ УГЛЕЙ И АНТРАЦИТОВ

1 ОБШИЕ ПОЛОЖЕНИЯ

Органическое вещество каменных углей и антрацитов, наблюдаемое под микроскопом в отраженном свете с масляной иммерсией, состоит из мацералов, отличающихся между собой по цвету, показателю отражения, микрорельефу, морфологии, структуре и степени ее сохранности, а также по размерам. При количественном петрографическом анализе мацералы углей объединяют в группы по близким химико-технологическим свойствам.

2 ГРУППА ВИТРИНИТА

2.1 Мацералы этой группы имеют ровную поверхность и серый цвет различных оттенков в зависимости от стадии метаморфизма. Рельеф менее выражен, чем у других мацералов. По цвету и рельефу эту группу принимают за образец сравнения, с которым сравнивают другие мацералы. Показатель отражения мацералов группы витринита в иммерсионном масле колеблется от 0,40 до 4,50 % и более.

Микротвердость находится в зависимости от стадии метаморфизма исходного материала, условий его превращения и колеблется от 200 до 350 МПа.

Мацералы группы витринита с показателем отражения от 0,64 до 1,85 % при нагревании без доступа воздуха переходят в пластическое состояние. Это их свойство также, как поведение в процессе коксования, зависит от стадии метаморфизма и восстановленности.

Группа витринита включает три мацерала: телинит, коллинит и витроде-

тринит.

2.1.1 Телинит — растительные фрагменты витринизированных тканей

различной степени сохранности клеточного строения (рисунки 1-5).

2.1.2 Коллинит — бесструктурная витринизированная основная масса, цементирующая все другие мацералы и минеральные вещества (рисунки 1, 3, 6, 7, 8, 13, 17—20).

2.1.3 В итродетринит — небольшие обломки с более или менее угловатыми очертаниями. Размер частиц менее 10 мкм. Витродетринит формируется в угольных пластах в результате дробления фрагментов телинита или коллинита под воздействием различных геологических факторов. При этом определение этих мацералов становится затруднительным.

З ГРУППА СЕМИВИТРИНИТА

3.1. По физическим и химико-технологическим свойствам эта группа занимает промежуточное положение между группой витринита и инертинита, но ближе стоит к витриниту. Мацералы этой группы по цвету и показателю отражения являются первым переходом от витринита к инертиниту. Эта группа не имеет рельефа. Цвет в отраженном свете — серо-белый различных оттенков,

Показатель отражения в иммерсионном масле колеблется от 0,60 до 2,70 % и всегда превышает значение показателя отражения витринита.

Микротвердость измеряется от 250 до 420 МПа.

В процессе коксования мацералы группы семивитринита не переходят в пластическое состояние, но в некоторой степени они способны размягчаться.

Группа включает два мацерала: семителинит и семиколлинит.

3.1.1 Семителинит — характеризуется наличием клеточной структуры различной степени сохранности (рисунок 1), при плохо сохранившейся клеточной структуре трудно отличим от семиколлинита. Поэтому при массовых подсчетах оба мацерала подсчитывают совместно.

3.1.2 Семиколлинит — бесструктурный мацерал. Встречается участками

различной формы и размера (рисунки 3, 6).

4 ГРУППА ЛИПТИНИТА

4.1 Мацералы этой группы различаются между собой по морфологическим признакам, обусловленным их происхождением. При этом их форма и размер также зависят от исходного растительного материала. Цвет липтинита изменяется от темно-коричневого, черного до серого в зависимости от стадии метаморфизма. При этом, начиная с IV стадии, соответствующей коксовым углям, цвет их становится подобен витриниту и эта группа практически бывает не различима при подсчете. Микротвердость колеблется от 80 до 250 МПа.

Показатель отражения у этой группы самый низкий от 0,21 до 1,5 %.

При коксовании мацералы группы липтинита образуют более подвижную пластическую массу, чем мацералы группы витринита.

Группа липтинита включает шесть мацералов: споринит, кутинит, резинит,

суберинит, альгинит и липтодетринит.

4.1.1 Споринит — оболочки экзин макро- и микроспор, состоящие из воскоподобного вещества. Споринит имеет в зависимости от ориентировки вид более или менее сплющенных колец, размер которых для макроспор колеблется от 0,1 до 3,0 мм, а для микроспор от 0,01 до 0,08 мм (рисунки 2, 9).

4.1.2 Ќ у т и н и т — остатки кутикулы, представляющие кутинизированный слой эпидермиса листьев и молодых побегов. В углях встречается в виде полос различной ширины, одна сторона которых более или менее ровная, а другая зубчатая. Иногда кутинит имеет вид волнистых полос без видимых зубчиков (ричатая.

синок 10).

- 4.1.3 Резинит разнообразные смоляные включения в виде отдельных телец. Включения резинита отличаются как по форме, так и по величине. Они встречаются в виде округлых зерен, овальных тел неправильных очертаний, вытянутых палочек (рисунок 11, 12, 16). Иногда резинит заполняет полости клеток в телините и семифюзините. Размеры резинита колеблются от десятков микрометров до нескольких миллиметров.
- 4.1.4 Суберинит стенки клеток коровых (пробковых) тканей, содержащие суберин. В углях этот компонент встречается чаще всего в виде каемок различной толщины, оконтуривающих коровую ткань. Имеет темно-серый почти черный цвет. Показатель отражения суберинита близок к показателю отражения споринита и кутинита.
- 4.1.5 Альгинит колонки водорослей определенной формы и размеров или бесструктурная сапропелевая основная масса, цементирующая в углях форменные элементы и минеральные вещества (рисунок 14).

Альгинит имеет темный, почти черный цвет и трудно отличим от других мацералов группы липтинита. 4.1.6 Липтодетринит — крайне мелкие обломки мацералов группы липтинита, которые из-за детритового состава не могут быть отнесены к определенному мацералу данной группы. Размер частиц 2—3 мкм.

5 ГРУППА ИНЕРТИНИТА

5.1 Эта группа характеризуется высоким показателем отражения и резко выраженным микрорельефом. Цвет изменяется от белого до желтого. Микротвердость колеблется от 500 до 2300 МПа.

Мацералы этой группы не переходят в пластическое состояние и не спека-

ются на всех стадиях метаморфизма.

Группа включает шесть мацералов: семифюзинит, макринит, микринит, фю-

зинит, склеротинит и инертодетринит.

- 5.1.1 Микринит мацерал каменных углей, отличающийся от других мацералов группы инертинита своим происхождением. Он характеризуется округлой формой зерен, размер которых не превышает 3 мкм. Цвет микринита бледно-серый до белого. Зерна микринита не имеют микрорельефа и встречаются в тонкодисперсном виде в коллините (рисунки 15, 16) или заполняют полости клеток.
- 5.1.2 Макринит бесструктурный мацерал. Цвет изменяется от светло-серого до белого и до желто-белого. Микрорельеф также различен. Он всегда выше, чем у семиколлинита и коллинита, но менее выражен, чем у склеротинита. Встречается в виде участков различной формы и размеров (рисунки 2, 3, 7, 8).

Показатель отражения колеблется от 0,70 до 4,00 %.

5.1.3 Семи ф юзинит — характеризуется наличием клеточной структуры различной степени сохранности (рисунки 4, 5, 8, 10). По показателю отражения, цвету и рельефу занимает промежуточное положение между семителинитом и ф. озинитом. Цвет изменяется от серо-белого до белого в отраженном свете.

Показатель отражения колеблется от 0.70 до 3.00 %.

 $5\,1.4$ Ф ю з и н и т — характеризуется наличием клеточной структуры различной степени сохранности. Цвет в отраженном свете желтовато-белый. Встречается в виде обломков линз или вытянутых участков различной ширины (рисунки 7, 8, 10).

Показатель отражения изменяется от 1,4 до 5,20 %.

5.1.5 Склеротинит—имеет форму округлых, округло-угловатых, овальных тел с резко очерченными краями или рельефных и пористых, губчатых тканей. Микрорельеф, как правило, резко выражен. Цвет изменяется от желтовато-белого до желтого. Поверхность различная— иногда гладкая, но чаще покрытая углублениями или полыми отверстиями, по-видимому, отвечающими плохо сохранившейся клеточной структуре (рисунки 6, 13, 15).

Показатель отражения колеблется от 2,3 до 5,5 %.

51.6. И нертодетринит — обломки или остатки мацералов, семифюзинита, макринита, фюзинита, склеротинита, которые вследствие небольших размеров не могут быть отнесены к определенным мацералам группы интертинита. Частицы инертодетринита, в основном, имеют угловатую, остроугольную форму, но встречаются и окатанные частицы. Размер частиц меньше 20 мкм.

6 МИНЕРАЛЬНЫЕ ВКЛЮЧЕНИЯ

6.1 Минеральные включения вкаменных углях и антрацитах представлены глинистыми минералами, сульфидами железа, карбонатами, окислами кремния и прочими минералами. Минеральные включения в отраженном

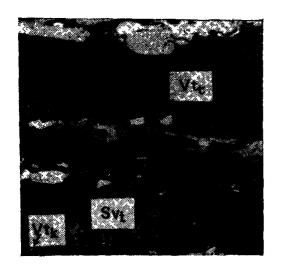
свете без иммерсии резко отличаются от мацералов и могут быть подсчитаны отдельно от них.

6.1.1 Глинистые минералы характеризуются темно-серым цветом с коричневым оттенком, имеют тонкозернистое или чешуйчатое строение. Они на 50 % и более сложены из частиц размером от 2 до 100 мкм. Глинистые минералы не имеют рельефа. В углях встречаются в виде линз, прослоек или в виде тонко рассеянных частиц среди коллинита, иногда заполняют клеточные полости в компонентах с ботанической структурой, нередко замещают отдельные участки органического вещества (рисунок 17).

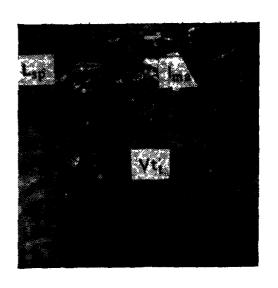
6.1.2 Сульфиды жёлеза в углях обычно представлены пиритом, марказитом, мельниковитом и характеризуются высоким микрорельефом и яркожелтым цветом. Их показатель отражения и микрорельеф выше, чем у фюзинита и склеротинита. Встречаются в виде отдельных зерен, розеток. Часто сульфиды заполняют клеточные полости растительных тканей (рисунок 18). Иногда

образуют скопления в виде участког различной формы и размеров.

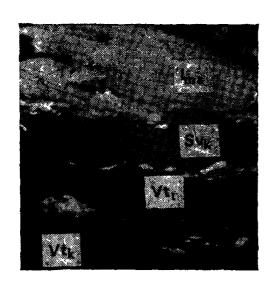
6.1.3 Карбонаты в углях обычно представлены кальцитом, сидеритом, доломитом, анкеритом и другими минералами. Цвет этих минералов серый, немного темнее, чем у витринита. В углях карбонаты встречаются в трещинах (рисунок 19) или образуют отдельные прослойки (рисунок 20), иногда заполняют клеточные полости структурных тканей. Рельеф их равен витриниту или немного выше, чем у него. Карбонаты обычно хорошо определяются при скрещенных николях по внутренним рефлексам, которых не дают мацералы.

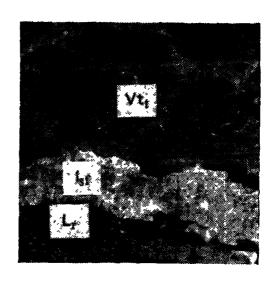

6.1.4 Окислы кремния представлены в углях кварцем, халцедоном, опалом и другими минералами. Цвет темно-серый, микрорельеф высокий, намного выше, чем у витринита, поэтому зерна имеют темную оторочку (рисунки

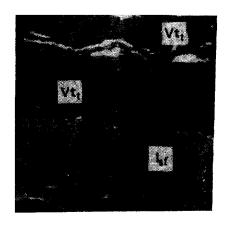
19. 20).

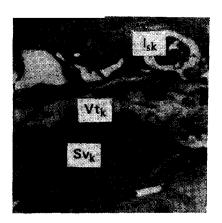

В углях кварц встречается в виде полуокатанных округлых и угловатых зерен, а также в виде небольших прослоек. Иногда заполняет трещины или полости клеток растительных тканей.

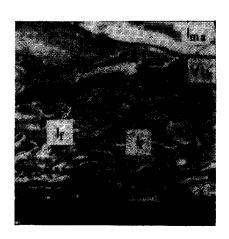
6.1.5 Прочие минеральные включения— все другие минералы, редко встречающиеся в угле (гидроокислы железа, полевые шпаты, гипс, слюда и др.).


ГОСТ 9414.1-94

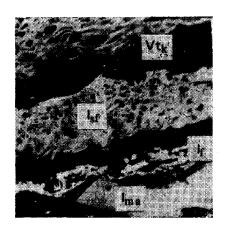

 Vt_{h} — коллинит; Vt_{f} — телинит; Sv_{f} — семителинит Рисунок 1 — Масляная иммерсия $665 \times$


 Vt_t — телинит; I_{ma} — макринит; L_{sp} — споринит Рисунок 2 — Масляная иммерсия $665 \times$

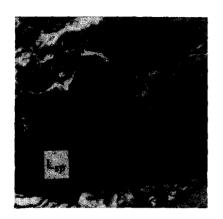

 ${
m Vt}_{h}$ — коллинит; ${
m Vt}_{t}$ — телинит; ${
m Sv}_{h}$ — семиколлинит; ${
m I}_{ma}$ — макринит Рисунок 3 — Масляная иммерсия 665 imes


 ${
m Vt}_t$ — телинит; ${
m I}_{sf}$ — семифюзинит; ${
m \it \it L}_r$ — резинит ${
m \it Pucy}$ нок ${
m \it 4}$ — ${
m \it Mac}$ ляная иммерсия ${
m \it 665} imes$

Vt, — телинит; I_{sf} — семифюзинит Рисунок 5 — Масляная иммерсия $665 \times$



 Vt_{k} — коллинит; Sv_{k} — семиколлинит; I_{sk} — склеротинит Рисунок 6 — Mасляная иммерсия $665 \times$


 Vt_k — коллинит; I_{ma} — макринит; I_f — фюзинит Рисунок 7 — Масляная

иммерсия 665×



 Vt_k — коллянит; I_{sf} — семифюзинит; I_{ma} — макринит; I_f — фюзинит Рисунок 8 — Масляная иммерсия $665 \times$

ГОСТ 9414.1-94

 ${
m L}_{s_F}$ — споринит Рисунок 9 — Масляная иммерсия 400 imes

 ${f L}_{h't}$ — кутинит; ${f I}_{sf}$ — семифюзинит; ${f I}_f$ — фюзинит Рисунок 10 — Масляная иммерсия 400 imes

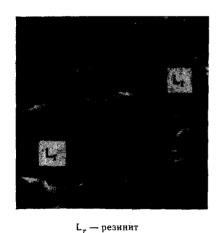


Рисунок 11 — Масляная иммерсия 665×

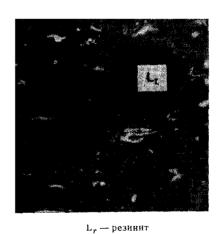
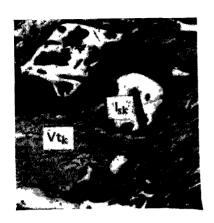
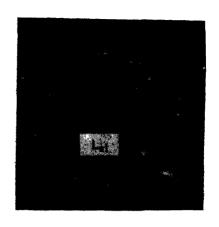
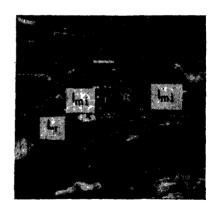
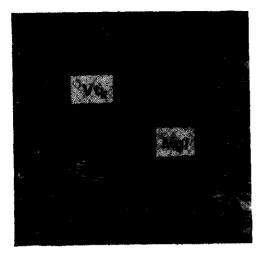
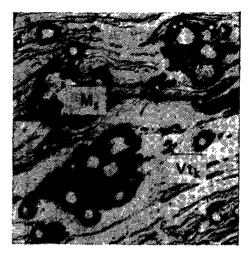




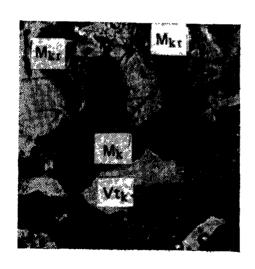
Рисунок 12 — Масляная иммерсия 665×


 ${
m Vt_{\it k}}$ — коллинит; ${
m I}_{\it sk}$ — склеротинит Рисунок 13 — Масляная иммерсия 665 imes

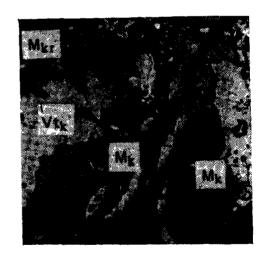
 ${
m L}_{al}$ — альгинит Рисунок 14 — Масляная иммерсия 665×




 I_{sh} — склеротинит; I_{m_1} — микринит Рисунок 15 — Масляная иммерсия $665 \times$


 I_{m_1} — микринит; L_r — резинит Рисунок 16 — Масляная иммерсия $665 \times$

ΓΟCT 9414.1-94



 $V_h \leftarrow$ коллинит; $M_s -$ сульфиды железа $Pисунок \ 18 - 210 \times$

 ${
m Vt}_{k}$ — коллинит; ${
m M}_{k}$ — карбонаты (кальцит); ${
m M}_{kr}$ — кварц ${
m Pисунок} \ \ 19 - 210 imes$

 Vt_k — коллинит; M_k — карбонаты; M_{kr} — кварц Рисунок $20 - 210 \times$

УДК 662.642:552.001.4

ОКСТУ 0309

A19

Ключевые слова: уголь каменный, антрацит, методы петрографического анализа, словарь терминов

Редактор Р. С. Федорова Технический редактор Н. С. Гришанова Корректор Н. И. Ильичева

Сдано в наб. 15,02 95 Подп. в печ. 17.04.95 Усл. п. л. 1,40 Усл. кр.-отт. 1,40 Уч-изд. л. 1,23 Тираж 341 экз С 2333