СМАЗОЧНЫЕ МАТЕРИАЛЫ, ИНДУСТРИАЛЬНЫЕ МАСЛА И РОДСТВЕННЫЕ ПРОДУКТЫ

Методы анализа

Издание официальное

ОТ СТАНДАРТИНФОРМ

Сборник «Смазочные материалы, индустриальные масла и родственные продукты. Методы анализа» содержит стандарты, утвержденные до 1 марта $2006\ r$.

В стандарты внесены изменения, принятые до указанного срока.

Текущая информация о вновь утвержденных и пересмотренных стандартах, а также о принятых к ним изменениях публикуется в ежемесячном информационном указателе «Национальные стандарты».

межгосударственный стандарт

Единая система защиты от коррозии и старения

масла и смазки

Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ΓΟCT 9.052—88

Unified system of corrosion and ageing protection. Oils and greases.

Laboratory test methods for mould resistance

МКС 19.040 75.100 ОКСТУ 0009

Дата введения 01.01.89

Настоящий стандарт распространяется на масла и смазки и устанавливает методы лабораторных испытаний на стойкость к воздействию плесневых грибов:

- 1 для установления грибостойкости масел и смазок при отсутствии минеральных и органических загрязнений;
- для установления грибостойкости смазок в условиях, имитирующих минеральные загрязнения;
- 3 для установления грибостойкости масел в условиях, имитирующих минеральные загрязнения:
- 4 для установления грибостойкости масел и смазок в условиях, имитирующих минеральные и органические загрязнения.

Смазки, применяемые для оптических приборов, испытывают только методом 1.

Методы применяют при испытании масел и смазок, к которым в стандартах или технических условиях предъявляют требования грибостойкости.

1. **МЕТО**Д 1

1.1. Сущность метода заключается в выдерживании образцов, зараженных водной суспензией спор грибов, в условиях, оптимальных для развития грибов, без дополнительного источника минерального и органического питания.

1.2. Отбор образцов

- 1.2.1. Масла и смазки отбирают по ГОСТ 2517 массой 10—15 г.
- 1.2.2. Образцами являются масла и смазки в состоянии поставки, без специальной очистки и стерилизации.
 - 1.2.3. Количество параллельных образцов должно быть не менее пяти.

1.3. Виды грибов

1.3.1. Для испытаний применяют чистые культуры следующих видов плесневых грибов:

Aspergillus niger van Tieghem

Penicillium chrysogenum Thom

Penicillium cyclopium Westling

Scopulariopsis brevicaulis (Sacc.) Bainier

Paecilomyces varioti Bainier

1.3.2. Культуры грибов получают в Институте биохимии и физиологии микроорганизмов АН СССР, поддерживают периодическим пересевом и выращивают непосредственно перед испытаниями.

Издание официальное

Перепечатка воспрещена

1*

С. 2 ГОСТ 9.052—88

- 1.3.3. Пересев, выращивание и хранение культур грибов по ГОСТ 9.048.
- 1.4. Аппаратура, материалы и реактивы по ГОСТ 9.048.

1.5. Подготовка к испытаниям

- 1.5.1. Посуду и материалы готовят по ГОСТ 9.048.
- 1.5.2. Среды для выращивания, хранения культур грибов и для испытаний готовят по ГОСТ 9.048.

Рецептура сред приведена в таблице.

Наименование реактива	Среда 1 (Чапека-Докса с агаром)	Среда 2 (Чапека-Докса с агаром без сахарозы)	Среда 3 (выщелочен- ный агар)	Среда 4 (сусло-агар)	Среда 5 (минераль- ная без сахарозы)
Однозамещенный фосфорнокислый					_
калий, г	0,7	0,7	_	_	1,0
Двузамещенный фосфорнокислый					
калий, г	0,3	0,3	_	_	_
Сернокислый магний, г	0,5	0,5	_	_	0,5
Азотнокислый натрий, г	2,0	2,0	_	_	3,0
Хлористый калий, г	0,5	0,5	_	_	2,0
Сернокислое железо, г	0,01	0,01	_	_	_
Сахароза, г	30,0	_	_	_	_
Агар-агар, г	30,0	Выщелочен-	Выщелочен-	30,0	_
		ный	ный		
		30,0	30,0		
Четырехбаллинговое неохмеленное					
пивное сусло (4 % сахара), см ³	_	_	_	До 1000	_
Дистиллированная вода, см ³		До 1000	•	_	_
Водопроводная вода, см ³	_	<u> </u>	-	_	До 1000

- 1.5.3 Чистые культуры грибов пересевают и выращивают по ГОСТ 9.048, используя грибы, приведенные в п. 1.3.1.
- 1.5.4. Для размещения образцов масел в чашку Петри наливают 20—30 см³ среды 3 и дают ей застыть. В застывшей среде просверливают пять лунок глубиной около 5 мм с помощью стерильного сверла диаметром 10 мм и наливают образцы масел на 1 мм ниже уровня среды.

Образцы смазок наносят на предметные стекла, покрывая всю поверхность слоем 1,5—2,0 мм, и помещают в чашки Петри.

1.5.5. Контроль жизнеспособности спор грибов проводят по ГОСТ 9.048.

Для контроля жизнеспособности спор грибов в чашку Петри наливают среду 1 или 4 в количестве $20-30~{\rm cm}^3$ и дают ей застыть.

1.6. Проведение испытаний

- 1.6.1. Водную суспензию спор грибов готовят по ГОСТ 9.048, используя грибы, выращенные, как указано в п. 1.5.3
- 1.6.2. Предметные стекла в чашках Петри, чашки Петри с образцами масел помещают в бокс. Поверхность образцов заражают водной суспензией спор грибов с помощью пульверизатора, не допуская слияния капель.
 - 1.6.3. Образцы масел и смазок после заражения выдерживают 1—2 ч при температуре (25±10) °C.
- 1.6.4. Предметные стекла в чашках Петри и чашки Петри с зараженными образцами и средами помещают в эксикатор, на дно которого налита вода. Эксикатор устанавливают в термостат с температурой (29±2) °C.
 - 1.6.5. Образцы выдерживают в термостате 56 сут.
- 1.6.6. Через 3—7 сут после начала испытаний осматривают контрольную чашку Петри. Если на поверхности среды развитие грибов не наблюдается, споры грибов считают нежизнеспособными. Испытания прекращают и повторяют их на новых образцах с вновь приготовленной суспензией спор из новой партии грибов.

- 1.6.7. Через 28 сут производят промежуточный осмотр образцов. Испытания образцов, на которых обнаруживают развитие грибов, прекращают.
- 1.6.8. По окончании испытаний предметные стекла в чашках Петри и чашки Петри извлекают из эксикатора и осматривают образцы.

1.7. Обработка результатов

- 1.7.1. Образцы смазок и масел осматривают под микроскопом при 50-60-кратном увеличении.
- 1.7.2. Масла и смазки считают грибостойкими при отсутствии развития грибов на всех испытанных образцах.

2. МЕТОД 2

- 2.1. Сущность метода заключается в выдерживании образцов, зараженных суспензией спор грибов в водном растворе минеральных солей, в условиях, оптимальных для развития грибов, на среде с дополнительным источником минерального питания.
 - 2.2. Отбор образцов по п. 1.2.
 - 2.3. Виды грибов по п. 1.3.
 - 2.4. Аппаратура, материалы и реактивы по ГОСТ 9.048.
 - 2.5. Подготовка к испытаниям по пп. 1.5.1—1.5.3, 1.5.5.
- 2.5.1. Для размещения образцов смазок среду 2 наливают в чашку Петри в количестве 20-30 см 3 и дают ей застыть.

2.6. Проведение испытаний

- 2.6.1. Суспензию спор грибов в среде 5 готовят по ГОСТ 9.048.
- 2.6.2. Смазки наносят скальпелем в количестве пяти образцов размером 10·10 мм толщиной 1,5—2,0 мм на поверхность среды в чашку Петри, подготовленную, как указано в п. 2.5.1.
 - 2.6.3. Дальнейший порядок проведения испытаний соответствует требованиям пп. 1.6.2—1.6.4.
 - 2.6.4. Образцы выдерживают в течение 28 сут.
- 2.6.5. Дальнейший порядок проведения испытаний по пп. 1.6.6—1.6.8 с промежуточным осмотром образцов через 14 сут.
 - 2.7. Обработка результатов по пп. 1.7.1, 17.2.

3. МЕТОД 3

- 3.1. Сущность метода заключается в выдерживании образцов, заряженных суспензией спор грибов в водном растворе минеральных солей, в условиях, оптимальных для развития грибов, на среде с дополнительным источником минерального питания.
 - 3.2. Отбор образцов по п. 1.2.
 - 3.3. Виды грибов по п. 1.3.
 - 3.4. Аппаратура, материалы и реактивы по ГОСТ 9.048.
 - 3.5. Подготовка к испытаниям по пп. 1.5.1—1.5.3 и 1.5.5.
 - 3.5.1. Для размещения образцов масел готовят пробирки с 2—3 см³ суспензии спор грибов в среде 5.
 - 3.5.2. Контролем служит суспензия спор грибов в среде 5.

3.6. Проведение испытаний

- 3.6.1. Суспензию спор грибов в среде 5 готовят по ГОСТ 9.048.
- 3.6.2. Образцы масел в количестве 2 см^3 вносят не менее чем в пять пробирок, приготовленных, как указано в п. 3.5.1.
- 3.6.3. Пробирки помещают в наклонном положении под углом 30° и выдерживают в термостате при температуре (29 ± 2) °C.
 - 3.6.4. Пробирки с образцами выдерживают в термостате 10 сут.
- 3.6.5. Через 5 и 7 сут осматривают образцы. Допускается отбирать пробы минеральной среды из пробирок для оценки грибостойкости биолюминесцентным методом, при этом пробирки с образцами выдерживают в термостате 3 и 5 сут.

При появлении признаков развития грибов в образцах испытания прекращают.

3.6.6. По окончании испытаний пробирки с образцами извлекают из термостата и осматривают невооруженным глазом или с помощью лупы при 2,5—5,0-кратном увеличении.

3.7. Обработка результатов

C. 4 FOCT 9.052-88

- 3.7.1. Масла считаются грибостойкими, если отсутствует развитие грибов на всех испытанных образцах (отсутствует пленка на границе раздела среда—масло, в пробирках среда прозрачна и не пигментирована, нет осадка).
- 3.7.2. Масла считаются не стойкими к плесневым грибам, если на образцах наблюдается развитие грибов, признаком которого служит образование пленки на границе раздела среда масло, помутнение и пигментация среды, образование осадка.
- 3.7.3. Допускается оценивать грибостойкость масел биолюминесцентным методом, приведенным в приложении.

4. МЕТОД 4

- 4.1. Сущность метода заключается в выдерживании образцов, зараженных суспензией спор грибов в водном растворе минеральных солей, в условиях, оптимальных для развития грибов, на среде с дополнительным источником минерального и органического питания.
 - 4.2. Отбор образцов по п. 1.2.
 - 4.3. Виды грибов по п. 1.3.
 - 4.4. Аппаратура, материалы и реактивы по ГОСТ 9.048.
 - 4.5. Подготовка к испытаниям по пп. 1.5.1—1.5.3, 1.5.5.
- 4.5.1. Для размещения образцов смазок готовят чашки Петри, как указано в п. 2.5.1, используя среду 1 или 4.
- 4.5.2. Для размещения образцов масел готовят лунки, как указано в п. 1.5.4, используя среду 1 или 4.
 - 4.6. Проведение испытаний по п. 2.6.
 - 4.6.1. Образцы выдерживают в термостате в условиях, приведенных в п. 1.6.4, 14 сут.
 - 4.6.2. Промежуточный осмотр образцов производят через 7 сут после начала испытаний.
 - 4.7. Обработка результатов по пп. 1.7.1 и 1.7.2.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ — по ГОСТ 9.048

ПРИЛОЖЕНИЕ Обязательное

БИОЛЮМИНЕСЦЕНТНЫЙ МЕТОД ОЦЕНКИ ГРИБОСТОЙКОСТИ

Сущность метода заключается в определении количества внутриклеточной аденозин-5'-трифосфорной кислоты динатриевой соли (АТФ) в минеральной среде после испытания масел на грибостойкость (п. 3.6.5) с помощью специфической ферментативной хемилюминесцентной реакции с использованием люциферин-люциферазной системы светляков. Интенсивность излучаемого свечения прямо пропорциональна концентрации АТФ. Концентрация АТФ пропорциональна количеству живых клеток, так как ее содержание во всех типах живых клеток примерно одинаково и составляет 1—10 мг/г сухого веса. Этот факт является основой биолюминесцентного метода определения биомассы.

1. Аппаратура, материалы и реактивы

Хемилюминометр медицинский ДЛИ 31.560.000, предназначенный для измерения интенсивности сверх-слабого свечения в области спектра 400-600 нм. Допускается использовать другие приборы аналогичного назначения, обеспечивающие измерение световых потоков от 10^4 до 10^8 квант/с.

Весы для статического взвешивания по ГОСТ 29329.

Термостат, обеспечивающий температуру нагрева до 200 °C.

Холодильник бытовой электрический по ГОСТ 16317.

Дозатор для отбора проб 0,1 см³.

Лабораторный рН-метр.

Пробирки стеклянные по ГОСТ 25336.

Колбы цилиндрические мензурные вместимостью 25 см³ по ГОСТ 1770.

Пипетки вместимостью 1, 10 см³.

Аденозин-5'-трифосфорной кислоты динатриевая соль, 3-водная (АТФ).

Люцифераза светляков.

Люциферин.

Диметилсульфоксид (ДМСО), х. ч.

Трис-(оксиметил)-аминометан, х. ч.

Кислота уксусная, х. ч. по ГОСТ 61.

Магний сернокислый, 7-водный, х. ч. по ГОСТ 4523.

Соль динатриевая этилендиамин -N, N, N', N' — тетрауксусной кислоты, 2-водная (трилон Б) (ЭДТА) по ГОСТ 10652.

Вода дистиллированная по ГОСТ 6709.

2. Подготовка к испытаниям

- 2.1. Стерилизуют посуду по ГОСТ 9.048.
- 2.2. Готовят раствор АТФ 1 ммоль/дм³: 13,8 мг АТФ помещают в мерную колбу вместимостью 25 см³, доводят до метки дистиллированной водой и перемешивают до полного растворения. Раствор ATФ 1 ммоль/дм³ разливают на порции объемом 1 см³ и хранят при температуре минус 20 °C. В замороженном виде раствор АТФ допускается хранить не более 3 мес.
- 2.3. Готовят стандартный раствор АТФ 10 мкмоль/дм³: порцию раствора АТФ 1 ммоль/дм³ (по п. 2.2) размораживают, отбирают с помощью дозатора 0,1 см³ раствора и помещают его в пробирку, содержащую 10 см³ дистиллированной воды. Раствор АТФ 10 мкмоль/дм³ готовят непосредственно перед применением.
- 2.4. Готовят 20%-ный раствор уксусной кислоты: 10 см³ уксусной кислоты разбавляют 40 см³ дистиллированной воды.
- 2.5. Готовят 0,1 моль/дм3 трис-ацетатный буферный раствор с рН-7,6, содержащий 10 ммоль/дм3 сернокислого магния, 2 ммоль/дм³ ЭДТА: в мерную колбу вместимостью 50 см³ загружают 0,605 г трис-(оксиметил)аминометана, 0,123 г сернокислого магния, 0,036 г ЭДТА, доводят до метки дистиллированной водой и перемешивают до полного растворения. Затем все содержимое колбы переносят в стакан вместимостью 100 см³ и титруют 20%-ным раствором уксусной кислоты до рН-7,8.
- 2.6. Готовят раствор люциферазы: 10 мг люциферазы растворяют в 10 см³ 0,1 моль/дм³ трис-ацетатном буферном растворе (п. 2.5). Приготовленный раствор люциферазы хранят во льду.
- 2.7. Готовят раствор люциферина: 3 мг люциферина растворяют в 10 см³ 0,1 моль/дм³ трис-ацетатного буферного раствора (п. 2.5).
- 2.8. Готовят экстракт клеток; отбирают из пробирок с образцами после выдержки их в термостате 3 и 5 сут (п. 3.6.5) пробу минеральной среды объемом 0,1 см³ и добавляют ее в пробирку к 0,9 см³ диметилсульфоксида (ДМСО). Смесь перемешивают встряхиванием в течение 1—2 мин. Экстракт пригоден для анализа в течение 1 сут.

3. Проведение испытаний

- 3.1. Помещают в кювету люминометра с помощью дозатора последовательно 0,1 см³ раствора люциферина, 0,1 см³ раствора люциферазы, 0,7 см³ трисацетатного буферного раствора и регистрируют интенсивность фонового свечения $I_{\text{фон}}$ в милливольтах.
- 3.2. Добавляют в ту же кювету дозатором 0,1 см³ экстракта клеток (п. 2.8), перемешивают и регистрируют сигнал интенсивности люминесценции I_1 .
- 3.3. Добавляют в ту же кювету 0.02 cm^3 стандартного раствора АТФ (п. 2.3) и регистрируют сигнал интенсивности люминесценции I_2 .

4. Обработка результатов

4.1. Интенсивность люминесценции образца ($I_{\text{обр}}$) в милливольтах вычисляют по формуле

$$I_{\text{oбp}} = I_1 - I_{\text{фон}}.\tag{1}$$

4.2. Интенсивность люминесценции стандартного раствора $AT\Phi$ (I_{ct}) в милливольтах вычисляют по формуле

$$I_{cr} = I_2 - I_1. \tag{2}$$

 $I_{\rm cr} = I_2 - I_{\rm l}.$ 4.3. Концентрация АТФ $\left[{\rm AT\Phi} \right]_{\rm oбp}$ в микромолях в образце вычисляют по формуле

$$\left[\mathsf{AT\Phi}\right]_{\mathsf{ofp}} = \frac{I_{\mathsf{ofp}} \cdot V_1 \cdot V_{\mathsf{cr}} \left[\mathsf{AT\Phi}\right]_{\mathsf{cr}} \cdot 10}{I_{\mathsf{cr}} \cdot V \cdot V_2},\tag{3}$$

где V — объем экстракта клеток, равный $0,1\,\,\mathrm{cm}^3$; V_1 — объем реакционной смеси до добавления стандартного раствора АТФ, равный $1\,\,\mathrm{cm}^3$; V_2 — объем реакционной смеси после добавления стандартного раствора АТФ, равный $1,02\,\,\mathrm{cm}^3$; V_{cr} — объем добавленного стандартного раствора АТФ, равный $0,02\,\,\mathrm{cm}^3$; $[\mathrm{AT\Phi}]_{\mathrm{cr}}$ — концентрация АТФ в стандартном растворе, равная $10\,\,\mathrm{мкмоль}$; $10\,\,\mathrm{mkmon}$; $10\,\,\mathrm{mkmon}$; $10\,\,\mathrm{mkmon}$; $10\,\,\mathrm{mkmon}$ — коэффициент, учитывающий разбавление пробы образца при экстракции клеток диметилсульфоксидом в 10 раз.

При упрощении формула (3) приобретает вид:

$$AT\Phi_{\text{obp}} = \frac{I_{\text{obp}}}{I_{\text{ct}}} \cdot 19,6.$$

4.4. Масла являются грибостойкими, если концентрация $AT\Phi$ меньше или равна 10^{-7} моль, масла не грибостойки, если концентрация $AT\Phi$ в образцах больше 10^{-7} моль.

С. 6 ГОСТ 9.052-88

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством высшего и среднего специального образования СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25.03.88 № 754
- 3. B3AMEH FOCT 9.052-75
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, приложения		
ГОСТ 9.048—89	1.3.3, 1.4, 1.5.1, 1.5.2, 1.5.3, 1.6.1, 2.4,		
	2.6.1, 3.4, 3.6.1, 4.4, приложение		
ΓOCT 61—75	Приложение		
ГОСТ 1770—74	Приложение		
ΓOCT 2517—85	1.2.1		
ГОСТ 4523—77	Приложение		
ГОСТ 6709—72	Приложение		
ГОСТ 10652—73	Приложение		
ГОСТ 16317—87	Приложение		
ГОСТ 25336—82	Приложение		
ΓOCT 29329—92	Приложение		

- 5. Ограничение срока действия снято по протоколу № 3—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- 6. ПЕРЕИЗДАНИЕ