

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

МОСТЫ ПОСТОЯННОГО ТОКА ИЗМЕРИТЕЛЬНЫЕ

МЕТОДИКА ПОВЕРКИ

FOCT 8.449—81 [CT CЭB 5646—86]

Издание официальное

ГОСУДАРСТВЕННЫЯ КОМИТЕТ СССР ПО СТАНДАРТАМ
М о с к в в

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений МОСТЫ ПОСТОЯННОГО ТОКА ИЗМЕРИТЕЛЬНЫЕ Методика поверки

ГОСТ 8.449—81

State system for ensuring the uniformity of measurements. D.C. bridges.

Verification procedure

(CT C3B 5646-86)

OKCTY 0008

Дата введения

01.01.83

Настоящий стандарт распространяется на уравновешенные измерительные мосты постоянного тока (далее — мосты), предназначенные для измерения электрического сопротивления от $1\cdot 10^{-8}$ до $1\cdot 10^{16}$ Ом. Стандарт устанавливает методику первичной и периодической поверок образцовых мостов 3-го разряда и рабочих мостов по ГОСТ 7165—78.

По методике настоящего стандарта допускается поверять рабочие мосты с метрологическими характеристиками, анало-

гичными характеристикам мостов по ГОСТ 7165—78.

Стандарт не распространяется на автоматические, универсальные, процентные мосты, мосты-компараторы, мосты для специальных измерений (для измерений заземлений, для определений мест повреждений в кабелях, для измерений неэлектрических величин и др.).

(Измененная редакция, Изм. № 1).

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки должны быть выполнены операции, указанные в табл. 1.

Таблина 1

		Ofgatest upon	тельность проведения операции п	
Наименование операции	Номер пункта стандарта	выпуске из производства и ремонта	эксплуатац ни и хранении	
Внешний осмотр Проверка электрической прочности изоляции	5.1 5.2	Да Да	Да Нет	
прочности изолиции Определение сопротивления изоляции:	5.3			
мостов с верхним преде- пом измерения до 10° Ом включ.		Да	Нет	
мостов с верхним преде- лом измерения св. 10 ⁶ Ом		Да	Да	
Опробование Проверка чувствительнос- ги встроенного нулевого индикатора	5.4 5.5	Да Да	Да Да	
Определение времени ус- гановления показаний встроенного нулевого ин- цикатора	5.6	Да	Да	
Определение основной по- решности встроенных мер сопротивления	5.7	Да	Да	
Определение основной по- решности встроенного ну- левого индикатора	5.8	Да	Да	
Определение основной по- грешности моста	5.9	ł		
Комплектная поверка Поэлементная поверка Определение нестабильнос- ги сопротивлений плеч об- разцового моста	5.9.2 5.9.3 5.10	Да Да Да (при вы- пуске из ре- монта)	Да Да Да	

2. СРЕДСТВА ПОВЕРКИ

2.1. При определении основной погрешности моста комплектным методом должны быть применены:

однозначные и многозначные меры сопротивления (далее — меры) по ГОСТ 23737—79, аттестованные в качестве образцовых. Основные характеристики мер сопротивления, применяемых при поверке по настоящему стандарту, приведены в справочном приложении 2.

Соотношение пределов допускаемой основной погрешности (доверительной относительной погрешности) образцовой меры и поверяемого моста должно соответствовать ГОСТ 8.028—86.

В зависимости от выбранного соотношения пределов допускаемой основной погрешности образцовой меры Δ_{π} и поверяемого моста $\Delta_{\pi,\pi}$ и максимальной допускаемой вероятности необнаружения ошибки поверки $P_{\text{н max}}$ значение $\Delta_{\pi,\pi}$ при поверке должно быть уменьшено в γ раз, где γ — коэффициент, определяемый по табл. 2. Значение $P_{\text{н max}}$ устанавливает заказчик в зависимости от условий эксплуатации поверяемого моста.

Таблина 2

			γ			
Δ_{π}/Δ_{n} π			при Р _{и та}	x		
-д/-п д	0,00	0.10	0,15	0,20	0.25	0.30
1/10 1/5 1/4 1/3 1/2,5 1/2	0,90 0,80 0,75 0,67 0,60 0,50	0,94 0,88 0,85 0,80 0,75 0,69	0,95 0,89 0,87 0,82 0,79 0,74	0,95 0,91 0,89 0,85 0,82 0,78	0,96 0,93 0,91 0,88 0,85 0,81	0,97 0,94 0,92 0,90 0,88 0,85

Пример. Образцовая мера сопротивления имеет предел допускаемой основной погрешности в 3 раза меньше, чем предел допускаемой основной погрешности поверяемого моста; необходимо обеспечить значение $P_{\text{н max}}$ не более 0,15. По табл. 2 определяем: $\gamma = 0,82$. Следовательно, при поверке бракуют все мосты, у которых $|\Delta| > 0,82 |\Delta_{\text{п, д}}|$, где Δ — погрешность моста, определенная в процессе поверки.

При комплектной поверке мостов, предназначенных для измерения сопротивлений свыше 1 · 10¹⁰ Ом, допускается применение переходных мер, удовлетворяющих требованиям табл. 2.

2.2. При определении основной погрешности моста поэлементным методом должны быть применены образцовые средства поверки, указанные в ГОСТ 13564—68, ГОСТ 8.237—77, а также встроенные в мост.

Соотношение погрешности определения действительного значения сопротивлений плеч и предела допускаемой основной погрешности плеч должно соответствовать требованиям п. 2.1 к соотношению погрешностей образцовой меры и поверяемого моста.

2.3. Для поверки электрической прочности изоляции должны быть применены установки, позволяющие получать регулируемое синусоидальное напряжение, со следующими характеристиками: полная мощность установки на стороне высокого напряжения — не менее 0,25 кВ·А, частота напряжения — 50 Гц, форма

кривой испытательного напряжения должна быть такой, чтобы отношение амплитудного значения напряжения к действующему значению находилось в пределах 1,34-1,48, диапазон напряжения — от 0,1 кВ до не менее испытательного, погрешность измерения испытательного напряжения — не более $\pm 10\%$.

2.4. Для определения сопротивления изоляции должны быть применены мегаомметры и тераомметры с верхним пределом измерения не ниже минимального допускаемого значения сопротивления изоляции электрических цепей поверяемого моста относительно корпуса, рабочим напряжением не ниже максимального рабочего и не выше испытательного для данного типа мостов, основной погрешностью не более 20%.

При поверке мостов с нормированным значением сопротивления изоляции $1\cdot 10^{8}$ Ом и выше допускается измерять сопротивление изоляции при напряжении, меньшем рабочего, но не менее 100 В.

- 2.5. Для опробования, проверки чувствительности и определения времени установления показаний встроенного нулевого индикатора должны быть применены однозначные и многозначные меры сопротивления по ГОСТ 23737—79 (см. справочное приложение 2) и секундомеры по ГОСТ 5072—79 с погрешностью не более 0,1 с.
- 2.6. При определении основной погрешности встроенных мер должны быть применены средства поверки, указанные в п. 2.2 или в нормативно-технической документации (далее НТД) на мост конкретного типа.
 - 2.7. Для контроля условий поверки должны быть применены:

термометр с ценой деления не более 0,1°C при поверке мостов классов точности 0,005 и 0,01 и образцовых мостов 3-го разряда и термометр с ценой деления не более 0,5°C при поверке остальных мостов. Диапазон измерений — не менее 15—25°C;

психрометр для измерения влажности в диапазоне 45—80% с погрешностью не более 5% при температуре 15—25°С;

барометр с диапазоном измерения не менее 96—104 к Πa , с погрешностью не более 1 к Πa ;

вольтметр, позволяющий измерять напряжение питания сети с погрешностью не более 1%.

2.8. Допускается применять другие вновь разработанные или находящиеся в обращении средства поверки, прошедшие метрологическую аттестацию в органах государственной метрологической службы и удовлетворяющие по точности требованиям настоящего стандарта.

3. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

3.1. При проведении поверки должны быть соблюдены следующие условия:

температура воздуха в помещении, где проводят поверку, должна быть равна, указанной в табл. 3.

Таблица 3

				1 0	ONNUA O
Постоянная с	0,001	0,005	0,02	0,1	0,2; 1; 2
Класс точности	0.002	0,01	0,05	0,5	5
Температура окружающего воздуха, °С	20,0±0,5	20±1	20±2	20±5	10—35

Примечание. По требованию заказчика поверка рабочих мостов, имеющих устройства для подстройки, может проводиться при температуре, отличной от указанной в табл. 3. Значение температуры, при которой должна проводиться поверка, устанавливает заказчик в пределах рабочего диапазона температур. Отклонения от этой температуры не должны быть более указанных в табл. 3.

Относительная влажность воздуха, атмосферное давление, напряжение и частота сети питания — по ГОСТ 7165—78, разд. 1.

- 3.2. В указанных условиях мосты перед проверкой должны находиться не менее 12 ч.
- 3.3. Мосты с подстраиваемыми сопротивлениями плеч должны быть предварительно подстроены.
- 3.4. Мосты, работающие с индивидуальными вспомогательными частями (присоединительными проводами, измерительной камерой и т. п.) должны быть поверены совместно с последними.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1. При проведении поверки необходимо руководствоваться «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации электроустановок потребителей», утвержденными Госэнергонадзором.
- 4.2. Средства поверки должны соответствовать требованиям ГОСТ 12.2.007.0—75, ГОСТ 12.2.007.3—75, ГОСТ 22261—82.

5. ПРОВЕДЕНИЕ ПОВЕРКИ

5.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие поверяемого моста следующим требованиям:

5.1.1. Мост должен быть представлен на поверку с паспортом (формуляром) и техническим описанием.

Образцовый мост должен быть представлен на поверку со

свидетельством о предыдущей поверке.

- 5.1.2. Комплектность моста (за исключением ЗИП) должна соответствовать требованиям паспорта (технического описания).
- 5.1.3. Образцовый мост должен иметь неповрежденное клеймо или пломбу предприятия-изготовителя или поверяющей организации.
- 5.1.4. Мост не должен иметь ни одной из перечисленных ниже неисправностей:

неудовлетворительное крепление электрических соединителей для подключения внешних цепей к мосту;

повреждение изоляции внешних токоведущих частей;

грубые механические повреждения наружных частей, отсутствие ручек регулировки;

неясность маркировки.

5.2. Проверка электрической прочности изоляции.

При проверке электрической прочности изоляции все зажимы моста (кроме зажимов «Земля» и «Корпус») соединяют между собой и подключают к незаземленному зажиму источника высокого напряжения;

заземленный зажим источника высокого напряжения соединяют с зажимом защитного заземления поверяемого моста (при его отсутствии — с корпусом моста); переключатель питания поверяемого моста должен находиться во включенном положении.

Напряжение на выходе источника высокого напряжения плавно увеличивают в течение 5—10 с до значения испытательного напряжения, указанного в НТД на мост данного типа.

Изоляция должна выдерживать полное испытательное напряжение в течение 1 мин.

Внезапное возрастание тока в низковольтной цепи источника напряжения указывает на неудовлетворительное состояние изоляции.

5.3. Определение сопротивления изоляции.

Сопротивление измеряют между зажимом защитного заземления поверяемого моста (при его отсутствии — корпусом моста) и всеми остальными зажимами, соединенными между собой.

Сопротивление изоляции должно быть не меньше указанного в НТД.

Если в НТД нормируется сопротивление изоляции между измерительной целью и вспомогательными частями (блоками питания, нулевым индикатором и т. п.), определение этих сопротивлений проводят в соответствии с указаниями в НТД.

Определение сопротивления изоляции мостов, в которых предусмотрена специальная защита от влияния токов утечки, про-

водят в соответствии с указаниями НТД на мост конкретного типа.

5.4. Опробование

При опробовании выполняют следующие операции:

5.4.1. Проверяют:

исправность переключателей, органов плавной регулировки и коммутирующих устройств;

фиксацию положений переключателей и возможность установки переключателей в любое из предусмотренных положений; наличие, исправность и соответствие съемных частей ком-

мутирующих устройств;

плавность хода и отсутствие заедания органов регулировки, возможность поворота органов регулировки на предусмотренный угол;

отсутствие проворачивания креплений переключателей, элементов регулировки, рукояток.

5.4.2. Проверяют работу механического корректора встроенного нулевого индикатора.

Механический корректор должен позволять устанавливать указатель индикатора на нулевую отметку шкалы.

5.4.3. Проверяют возможность уравновешивания моста.

Мост включают и подготавливают к работе в соответствии с указаниями НТД.

К одинарному мосту подключают многозначную меру сопротивления, соответствующую одному из диапазонов измерений моста. На плече сравнения устанавливают максимальное показание и уравновешивают мост, изменяя сопротивление меры, при этом достаточно приближенного равновесия моста. На всех остальных диапазонах возможность уравновешивания проверяют при одном произвольном сопротивлении меры, уравновешивая мост изменением сопротивления плеча сравнения.

Возможность уравновешивания реохордного моста проверяют,

уравновешивая мост реохордом.

Возможность уравновешивания двойного моста проверяют так же, как и одинарного, с той лишь разницей, что вместо одной меры к зажимам $R_{\rm X}$ и $R'_{\rm N}$ подключают две меры сопротивления.

При опробовании одинарно-двойных мостов после проверки одинарного моста достаточно проверить возможность уравновешивания двойного моста при одном значении сопротивления меры.

- 5.5. Проверка чувствительности встроенного нулевого индикатора
- 5.5.1. Чувствительность встроенного нулевого индикатора проверяют на нижнем и верхнем пределах измерения каждого диапазона измерений, верхний предел которых не превышает $1\cdot 10^{10}$ Ом.

- 5.5.2. К мосту подключают меру с номинальным сопротивления, равным показанию моста на проверяемом диапазоне. При минимальном нормированном напряжении тока питания производят уравновешивание моста. Затем изменяют показание моста или меры на значение, равное пределу допускаемой основной погрешности моста, и отмечают отклонение указателя нулевого индикатора. Указатель должен отклониться не менее чем на одно деление шкалы.
- 5.6. Определение времени установления заний встроенного нулевого индикатора
- 5.6.1. Проверку времени установления показаний встроенного нулевого индикатора производят на верхнем и нижнем пределах измерений всех диапазонов моста.
- 5.6.2. К мосту подключают меру с номинальным значением сопротивления, равным показанию моста на данном диапазоне, и уравновешивают мост. Изменяя сопротивление меры или плавно регулируемого плеча, устанавливают указатель нулевого индикатора на крайнюю отметку шкалы. Выключают питание мостовой цепи и при помощи секундомера отсчитывают время от момента выключения до момента, когда удаление указателя от нулевой отметки не превысит одного деления.
- 5.6.3. В мостах, у которых отключение питания мостовой цепи ведет к отключению нулевого индикатора (например, в мостах, имеющих нулевые индикаторы с электронными усилителями или световым отсчетным устройством), проверку времени установления показаний производят следующим образом. После подключения к мосту меры и уравновешивания моста изменяют сопротивление меры или плеча сравнения таким образом, чтобы указатель нулевого индикатора отклонился до крайней отметки шкалы. Вновь устанавливают сопротивление, соответствующее равновесию моста, и по секундомеру отсчитывают время от момента переключения до момента, когда удаление указателя от нулевой отметки не превышает одного деления.
- 5.6.4. Время установления показаний не должно превышать указанного в НТД.
 - 5.6.5. Допускается совмещать операции по пп. 5.4—5.6.
- 5.6.6. При периодической поверке время установления показаний нулевого индикатора, встроенного в мост, предназначенный для измерения сопротивления более 1.1010 Ом, допускается не проверять.
- 5.7. Определение основной погрешности встроенных мер сопротивления
- 5.7.1. Определение основной погрешности однозначных мер, используемых в качестве одного из плеч двойного моста или для поверки, производят по ГОСТ 8.237—77 или ГОСТ 13564—68.

5.7.2. Определение основной погрешности многозначных мер сопротивления, служащих для поверки моста, а также мер отношения сопротивления производят в соответствии с указаниями в НТД на мост.

5.8. Определение основной погрешности встроенного нулево-

го индикатора.

В случае применения в качестве встроенного нулевого индикатора прибора с нормированной погрешностью последний должен поверяться по ГОСТ 8.497—83.

Допускается определять только чувствительность такого прибора при наличии знака «И» на приборе или соответствующих указаний в НТД.

5.9. Определение основной погрешности моста 5.9.1. Основную погрешность моста определяют комплектно или поэлементно.

Комплектная поверка является предпочтительной в тех случаях, когда не требуется определение поправок к показаниям поверяемого моста, так как позволяет повысить производительность поверочных работ.

Поэлементную поверку применяют в случае невозможности комплектной поверки из-за отсутствия требуемых образцовых средств и в случае поверки мостов, для которых необходимо определение поправок.

Допускается применение разных видов поверки для одного

моста на разных диапазонах измерения.

5.9.2. Комплектная поверка

5.9.2.1. Поверка заключается в прямом измерении поверяемым мосгом сопротивлений, воспроизводимых образцовыми мерами.

На отсчетном устройстве моста устанавливают проверяемое показание и уравновешивают мост, изменяя сопротивление образцовой многозначной меры $R_{\rm X}$ (черт. 1).

Рассчитывают основную абсолютную Δ и относительную δ погрешности моста при данном показании по формулам:

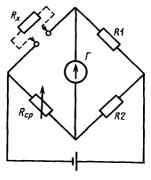
$$\Delta = R - R_{\pi}; \tag{1}$$

$$\delta = \frac{\Delta}{R} \cdot 100,\tag{2}$$

где Δ — основная абсолютная погрещность, Ом;

R — показание моста, Ом;

R_д — сопротивление образцовой меры, Ом;


 δ — основная относительная погрешность, %.

Результаты заносят в протокол, форма которого приведена в обязательном приложении 3.

(Измененная редакция, Изм. № 1).

5.9.2.2. На основном диапазоне погрешности определяют при всех основных отсчетах по плавнорегулируемому плечу и отсчетах, составленных из наименьшего основного и каждого неосновного (см. справочное приложение 1).

Пример. Мост класса точности 0,1 имеет пятидекадное плечо сравнения (9×10000 ; 9×1000 ; 9×100 ; 9×10 ; 9×10 .

Черт. 1

Погрешность определяют при следующих основных отсчетах по плечу сравнения:

10000	01000
20000	02000
30000	03000
40000	04000
50000	05000
60000	06000
70000	07000
80000	08000
90000	09000

и отсчетах, составленных из наименьшего основного (01000) и каждого неосновного:

01100	01010	01001
01200	01020	01002
01300	01030	01003
01400	01040	01004
01500	01050	01005
01600	01060	01006
01700	01070	01007
01700	01070	01007
01800	01080	01008
01900	01090	01009

5.9.2.3. Выделяют два отсчета R' и R'', удовлетворяющие следующим требованиям: если все погрешности на основном диапазоне измерения имеют один знак, то R' соответствует максимальной относительной погрешности, а R'' — минимальной; если погрешности имеют разные знаки, то R' и R'' соответствуют максимальным по абсолютному значению отрицательной и положительной относительным погрешностям.

На неосновных диапазонах погрешность определяют только при отсчетах R' и R''.

- 5.9.2.4. Если на каком-либо диапазоне показание ответствующее одному или обоим отсчетам R' и R'', оказывается ьне диапазона измерения, то по п. 5.9.2.3 выбирают другие отсчеты, находящиеся в пределах диапазона.
- 5.9.2.5. При отсутствии образцовых мер требуемого значения для определения погрешности, соответствующей отсчетам н R'' на каком-либо из неосновных диапазонов, погрешность определяют следующим образом. Определяют относительные грешности на основном и проверяемом диапазонах при отсчеге, для которого есть образцовые меры на этих диапазонах. Рассчитывают поправочный член C_i для проверяемого диапазона по формуле

$$C_i = \delta_{\text{och}} - \delta_i, \tag{3}$$

где $\delta_{\text{осн}}$ и δ_i — основные относительные погрешности на основном и проверяемом і-м соответственно диапазонах.

Погрешности, соответствующие отсчетам R' и R'' на проверяемом диапазоне, рассчитывают по формулам:

$$\delta'_{i} = \delta'_{\text{och}} - C_{i}; \qquad (4)$$

$$\delta''_{i} = \delta''_{OCH} - C_{i}, \qquad (5)$$

где δ'_i и $\delta''_{\text{осн}}$ — основные относительные погрешности на проверяемом и основном диапазонах, соответственно, при отсчете R'; δ''_i , δ''_{och} — то же, при отсчете R''.

Пример. На основном диапазоне наибольшие погрещности 0,03% и минус 0,02% получены при отсчетах 7000 и 1030 по плавнорегулируемому плечу. На неосновном диапазоне этим отсчетам соответствуют показания моста 7×10^{11} Ом и $1,03 \times 10^{11}$ Ом. Требуемые для поверки образцовые меры отсутствуют. Имеется мера 1×1011 Ом, соответствующая отсчету 1000 по плавнорегулируемому плечу.

Погрешность моста на неосновном диапазоне при отсчетах 7000 и 1030 определяют следующим образом.

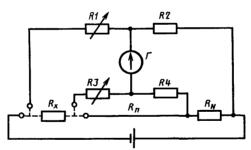
C. 12 FOCT 8.449-81

Находят в протоколе поверки погрещность $\delta_{\text{осн}}$, соответствующую отсчету 1000 на основном диапазоне

$$\delta_{\text{och}} = +0.01\%$$
,

Определяют погрешность δ_1 , соответствующую отсчету 1000 на проверяемом неосновном диапазоне

$$\delta_i = +0.15\%$$
.


Определяют поправочный член C_i по формуле (3)

$$C_i = -0.14\%$$
.

Определяют погрешности $\delta_{i,7000}$ и $\delta_{i,1030}$, соответствующие отсчетам 7000 и 1030, на проверяемом диапазоне по формулам (4), (5):

$$\delta_{i, 7000} = +0,17\%;$$

 $\delta_{i, 1030} = +0,12\%.$

5.9.2.6. При проверке одинарных мостов с двумя переключателями дипазонов измерений (значения сопротивления каждого плеча отношения устанавливают отдельным переключателем) и двойных мостов значения сопротивления плеч отношения, определяющие диапазон измерения, должны выбираться в соответствии с рекомендациями в НТД на мост.

Черт. 2

5.9.2.7. Комплектную поверку двойных мостов производят в соответствии с указаниями, изложенными в пп. 5.9.2.1—5.9.2.5, с той разницей, что вместо одной меры к мосту присоединяют две образцовые меры: многозначную $R_{\rm X}$ и однозначную $R_{\rm N}$ (черт. 2). Определению погрешностей предшествует измерение сопротивления перемычки $R_{\rm II}$ (см. обязательное приложение 4). Сопротивление перемычки не должно превышать значения, указанного в НТД на мост.

- 5.9.3. Поэлементная поверка
- 5.9.3.1. Поверка заключается в определении погрешности всех плеч моста в отдельности и последующем расчете погрешности моста в целом.
- 5.9.3.2. В зависимости от конструкции моста (наличия в нем специальных устройств для поверки) поэлементную поверку выполняют одним из трех способов:

способом определения погрешностей всех плеч моста при помощи внешних образцовых средств;

способом определения погрешностей плеча сравнения при помощи внешних образцовых средств и независимой поверки плеч отношений:

способом определения погрешностей всех плеч моста по встроенной образцовой мере.

5.9.3.3. Способ определения погрешностей всех плеч моста при помощи внешних образцовых средств.

Определение погрешностей плеч производят по ГОСТ 13564—68 и ГОСТ 8.237—77.

Резисторы с номинальным сопротивлением 1000 Ом и менее, действительные значения сопротивления которых определяют с доверительной относительной погрешностью 0,01% и менее, а также все остальные с номинальным сопротивлением 100 Ом и менее, образующие плечо моста, должны подключаться к измерительной цепи по четырехзажимной схеме. Для этого используют поверочные щетки или узловые точки схемы поверяемого моста, указанные в НТД.

Результаты заносят в протокол (см. обязательное приложение 5).

При массовом выпуске из производства допускается форма протокола, отличная от указанной.

5.9.3.4. Для мостов, находящихся в эксплуатации и выпускаемых из ремонта, погрешности плеч моста не должны превышать
удвоенного значения предела допускаемой основной погрешности
каждого из плеч, указанного в НТД на мост, при условии, что
наибольшая относительная погрешность моста в целом не превышает предела допускаемой основной погрешности моста. Осковную относительную погрешность моста в вычисляют по формулам:

для одинарного моста (см. черт. 1)

$$\delta = \delta_{cp} + \delta_1 - \delta_2, \qquad (6)$$

где δ_{cp} — основная относительная погрешность плеча сравнения; $\delta_1,\ \delta_2$ — основные относительные погрешности плеч отношения; для двойного моста (см. черт. 2)

$$\delta = \delta_N + (\delta_1 - \delta_2) + K \left[(\delta_1 - \delta_3) - (\delta_2 - \delta_4) \right], \tag{7}$$

где δ_N — основная относительная погрешность образцовой меры;

 δ_1 , δ_2 , δ_3 , δ_4 — основные относительные погрешности плеч R_1 , R_2 , R_3 , R_4 , соответственно;

K — отношение сопротивления перемычки R_{π} к сумме сопротивлений мер R_{N} и R_{X} , вычисляемое по формуле

$$K = \frac{R_{\rm II}}{R_{\rm N} + R_{\rm x}} \tag{8}$$

При выборе значений погрешностей в формулах (6) и (7) необходимо учитывать рекомендации в НТД на мост. При этом значения погрешностей в формулах (6) и (7) должны выбираться такими, при которых погрешность моста в целом получится наибольшей.

Следует иметь в виду, что в формуле (7) δ_1 , δ_3 и δ_2 , δ_4 должны относиться к номинально равным значениям, соответственно, R_1 , R_3 и R_2 , R_4 .

Допускается не производить расчет наибольшей относительной погрешности моста в целом, если погрешности отдельных плеч не превосходят пределов их допускаемых погрешностей.

5.9.3.5. Способ определения погрешностей плеча сравнения при помощи внешних образцовых средств и независимой поверки плеч отношений.

При этом способе определение погрешностей плеча сравнения должны производиться по ГОСТ 13564—68, а плеч отношения— по методике, изложенной в НТД на мост.

5.9.3.6. Способ определения погрешностей всех плеч моста по встроенной образцовой мере.

Определение погрешности встроенной образцовой меры должно производиться по ГОСТ 8.237—77, а погрешностей плеч моста по методике, изложенной в НТД на мост.

5.9.3.7. По окончании поэлементной поверки моста, выполненной с использованием поверочной щетки, проверяют возможность уравновешивания моста по п. 5.4.3 при одном произвольном сопрозивлении меры.

(Введен дополнительно, Изм. № 1).

- 5.9.4. Погрешности моста, определенные при поверке, не должны превышать допускаемых значений, указанных в НТД на мост конкретного типа.
- 5.10. Определение нестабильности сопротивлений плеч образ-

Для определения нестабильности сопротивлений плеч образцового моста сравнивают результаты проведенной и предыдущей

поверок. Результаты не должны отличаться более чем на 0,5 предела допускаемой погрешности.

Примечание. Для мостов с пределом допускаемой основной погрешности 0,1% и более, применяемых в диапазоне сопротивлений от 1 до 1000 Ом, и для мостов, имеющих устройства для подстройки сопротивлений плеч, нестабильность сопротивлений плеч не определяют.

- 5.11. С разрешения Госстандарта допускается применение других методов поверки мостов, обеспечивающих точность не меньшую, чем требуется в настоящем стандарте.
- 5.12. Пояснение некоторых терминов, встречающихся в стандарте, приведены в справочном приложении 1.

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 6.1. Положительные результаты государственной первичной поверки оформляют записью в паспорте, удостоверенной подписью поверителя, и нанесением на мост оттиска клейма.
- 6.2. Положительные результаты государственной периодической поверки оформляют нанесением на мост клейма. На образцовые мосты выдают свидетельства установленной формы. Оборотная сторона свидетельства о поверке (за исключением случаев, упомянутых в примечании к п. 5.10) приведена в обязательном приложении 6. По требованию заказчика, на рабочие мосты выдают справку с указанием поправок.
- 6.3. Положительные результаты периодической ведомственной поверки оформляют в порядке, установленном ведомственной метрологической службой.
 - 6.4. Клеймо ставят в месте, исключающем доступ внутрь моста.
- 6.5. Порядок экспериментального определения метрологических характеристик мостов постоянного тока при их метрологической аттестации в качестве образцовых приведен в справочном приложении 7.
- 6.6. Мосты, не удовлетворяющие требованиям настоящего стандарта, к выпуску в обращение не допускают, имеющиеся на них клейма гасят и владельцу выдают извещение о непригодности моста с указанием причин.

ПРИЛОЖЕНИЕ 1 Справочное

ПОЯСНЕНИЯ К НЕКОТОРЫМ ТЕРМИНАМ, ПРИМЕНЯЕМЫМ В НАСТОЯЩЕМ СТАНДАРТЕ

Основной диапазон — диапазон измерений, удовлетворяющий следующим требованиям:

предел допускаемой основной погрешности должен быть наименьшим;

сопротивления плеч отношения должны быть не менее 10 Ом для мостов с пределом допускаемой основной погрешности 0,05% и не менее 1 Ом для всех остальных мостов;

образцовая многозначная мера должна позволить определение основной погрешности при всех проверяемых отсчетах.

Основной отсчет по магазинному плечу сравнения — отсчет по плечу сравнения, выраженный не менее чем:

шестиразрядным числом для мостов с пределом допускаемой основной погрешности 0.001—0.005%;

пятиразрядным числом для мостов с пределом допускаемой основной погрешности 0.01—0.05%;

четырехразрядным числом для мостов с пределом допускаемой основной погрешности 0,1—0,5%;

трехразрядным числом для остальных мостов.

Основной отсчет по реохордному плечу — отсчет, лежащий в той части шкалы реохорда, для которой изменение положения указателя реохорда на 1 мм соответствует относительному изменению показания моста не более чем на половину его предела допускаемой основной погрешности.

Встроенная мера — мера, конструктивно объединенная с мостом и используемая в качестве одного из плеч или для поверки.

ПРИЛОЖЕНИЕ 2 Справочное

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МЕР СОПРОТИВЛЕНИЯ, ПРИМЕНЯЕМЫХ ПРИ ПОВЕРКЕ ПО НАСТОЯЩЕМУ СТАНДАРТУ

Многозначные меры сопротивления

Заводское обозначение	Класс точности	Диапазон регулируемых сопротивлений, Ом	Число декад
P3026/1 P3026/2 P3026/3 P327 P4831 MCP—60M P4075 P4076 P4077	0,002/1,5·10 ⁻⁶ 0,005/1,5·10 ⁻⁶ 0,01/1,5·10 ⁻⁶ 0,01 0,02/2·10 ⁻⁶ 0,02/2·10 ⁻⁵ 0,02 0,02 0,02 0,02 0,02	0,01—111111,1 0,01—111111,1 0,01—111111,1 0,1—111111 0,021—11111,1 0,01—11111,1 105—106 106—107 107—108 108—109	7 7 7 6 7 6 1
P4076 MCP—63 P4002 P4003 P4004 P4005 P4001	0,05/4·10 ⁻⁶ 0,05 0,05 0,05 0,05 0,05 0,05 0,1	0,01—111111,1 104—108 105—106 106—107 107—108 104—11·106	7 4 1 1 1 3

Однозначные меры сопротивления

Заводское обозначение	Номинальное сопротивление, Ом	Класс точности
P310	10-3, 10-2	0.01
P321	10-1, 1,10	0,01
P331		0,01
P4015	10 ² , 10 ³ , 10 ⁴ , 10 ⁵	0,01
P4016		0,005
P4017	106	0,005
P4018	107	0,005
P4030	108	0,005
	109	0,02
P4085	10°, 10¹°	0,05
P4085	1011	0,1
P4085	1012	0,1 0,2
P3030	1,10, 10 ²	0,002
P3030	10 ³ , 10 ⁴ , 10 ⁵	0,005

C. 18 FOCT 8.449-81

Переходные меры сопротивления

Заводское обозначение	Номинальное сопротивление секции, Ом	Погрешность передачи размера единицы сопро- тивления, %	Предел допускаемой основной погрешнисти, %
P4063 P4064 P4065 P4066 P4067 P4080 P4081 P4082 P4083	10 ⁵ 10 ⁶ 10 ⁷ 10 ⁸ 10 ⁹ 10 ⁵ 10 ⁶ 10 ⁷	0,0002 0,0002 0,0002 0,0005 0,001 0,001 0,001 0,001 0,001	0,01 0,01 0,01 0,02 0,05 0,05 0,05 0,05 0,05

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 3 Обязательное

Форма протокола при комплектной поверке мостов постоянного тока

	прот	окол ж		
Мост постоянного т	ока типа _	, N ₂	класса	точности
	, представлен	ный на поверку	······································	····
наименование	организации			
Образцовые ме	ры сопротивл	ениятип,	номер, класс то	НТООНРО
Температура во				
			Основная	погрешность
Отсчет по плечу сравненяя	Показание моста, Ом	Значение сопро- тивления образцовой меры, Ом	абсолютная, Ом	относительная, %
Прадад намара	uud (omnomen			
		не плеч)	пре	дел допускаемон
сновной погрешно	сти моста	%		
Заключение				
Поверку прове	л			
			фамн	мини, кни
c	19	r		

ОПРЕДЕЛЕНИЕ СОПРОТИВЛЕНИЯ ПЕРЕМЫЧКИ ДВОЙНОГО МОСТА

Для определения сопротивления перемычки $R_{\rm m}$ двойного моста (см. черт. 2 настоящего стандарта) к зажимам моста $R_{\rm x}$ подключают меру с номинальным значением сопротивления, равным номинальному значению сопротивления меры $R_{\rm N}$ и производят уравновешивание моста.

Рассчитывают результат измерения по формуле

$$R_{\chi_1} = R_N \frac{R_1}{R_2}. \tag{1}$$

Затем отключают внутренний потенциальный проводник от зажима $R_{\mathbf{x}}$ (размыкают цепь R_3 — $R_{\mathbf{x}}$) и вторично уравновешивают мост. Результат второго измерения $R_{\mathbf{x}_0}$ определяют по формуле

$$R_{x_2} = R_N \frac{R'_1}{R_2} , \qquad (2)$$

где R'_1 — сопротивление плеча R_1 после второго уравновешивания. Сопротивление перемычки вычисляют по формуле

$$R_{\pi} = R_{\mathbf{x}_0} - R_{\mathbf{x}_1} \quad . \tag{3}$$

ПРИЛОЖЕНИЕ 5 Обязательное

Форма протокола при поэлементной поверке мостов постоянного тока

протокол № _____ Мост постоянного тока типа ______, №______, класса точности , представленный на поверку наименование организации Образцовые средства измерений _____ тип, номер, класс точности Температура воздуха _____°С 1. Начальное сопротивление и его вариация ſ. Среднее значение, Ом Вариация, Ом 2. 4. 2. Погрешности отдельных плеч Показание образцового Основная Действительсредства, Ом Номинальное погрешность Отсчет ное значение значение со-ПО сопротивлепротивления. относиплечу ния плеча, плеча. Ом прямой обратный среднее абсолюттельная, Ом TOK TOK значение ная. Ом Плечо _____ Предел допускаемой основной погрешности ______ % 3. Наибольшая относительная погрешность моста Заключение Поверку провел фамилия, инициалы

« ______ 19 _____ г.

ПРИЛОЖЕНИЕ 6 Обязательное

Форма записи результатов поэлементной поверки мостов в свидетельстве

РЕЗУЛЬТАТЫ ПОВЕРКИ

Температура во	здуха°С.	•				
Плечо сравнени		е, к какому пл	ечу относятся ре	зультаты		
Поправки к показанию (по декадам). Ом						
Отсчет по лимбу декады	××	_ ×	×	×		
Плечо отношени		е, к какому пл	ечу относятся ре	зультаты		
Номиналь	ьное значение, Ом		Поправи	а. Ом		
Поверку провел						
<>	подпись	r .	фамилия, в	мувилин		

ПРИЛОЖЕНИЕ 7 Справочное

Порядок экспериментального определения метрологических характеристик мостов постоянного тока при метрологической аттестации их в качестве образцовых

Мост постоянного тока, предназначенный для применения в качестве образцового, должен быть подвергнут метрологической аттестации (далее — аттестации). Аттестацию производят по результатам двух поверок, проведенных с интервалом в один год. На аттестацию мост представляют со справкой в соответствии с п. 6.2 настоящего стандарта. Аттестуемый мост должен удовлетворять требованиям настоящего стандарта, предъявляемым к образцовым мостам.

Результаты аттестации оформляют в виде свидетельства по ГОСТ 8.382-80.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам

ИСПОЛНИТЕЛИ

- В. П. Шигорин, Л. И. Любимов (руководители темы); Л. И. Погосова; И. Д. Форсилова; Г. А. Ланскова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 04.12.81 № 5244
- 3. Стандарт полностью соответствует СТ СЭВ 5646-86
- 4. B3AMEH FOCT 13550-68
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД,	Номер пункта, подпункта,
на который дана ссылка	перечисления, приложения
FOCT 8.028—86 FOCT 8.237—77 FOCT 8.497—83 FOCT 12.2.007.0—75 FOCT 5072—79 FOCT 7165—78 FOCT 13564—68 FOCT 22261—82 FOCT 23737—79	2.1 2.2; 5.7.1; 5.9.3.3; 5.9.3.5 5.8 4.2 4.2 2.5 Вводная часть; 2.8 2.2; 5.7.1; 5.9.3.3; 5.9.3.5 4.2 2.5

ПЕРЕИЗДАНИЕ [март 1988 г.] с Изменением № 1, утвержденным в апреле 1987 г. (ИУС 8—87)

Редактор О. К. Абашкова Технический редактор Э. В. Митяй Корректор Л. В. Сницарчук

Сдано в наб. 28.03.88 Подп. в печ. 09.06.88 1,5 усл. п. л. 1,625 усл. кр.-отт. 1,31 уч.-изд. л. Тираж 10 000 Цена 5 коп.

	Единица			
Величина	Нанменование	Обозначение		
	Панменование	международное	руссное	
основны	Е ЕДИНИ	цы си		
Длина	метр	m	M	
Macca	килограмм	kg	Kľ	
Время	секунда	s	c	
Сила электрического тока	ампер	A	A	
Термодинамическая температура	кельвин	К	K	
Количество вещества	моль	mol	моль	
Сила света	кандела	cd	кд	
ДОПОЛНИТЕ	Льные еј	, Линицы си	1	
Плоский угол	радиан	rad	рад	
Телесный угол	стерадиан	Sr	ср	

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

Величина	Единица			Выражение через
	Наименова- ние	Обозначение		основние и Че-
		междуна- родное	русское	полнительные единицы СИ
Частота	герц	Hz	Гц	c-1
Сила	ньютон	N	н	M·KF·C-
Давление	паскаль	Pa	Па	M-1 · KL·C-2
Энергия	джоуль	J	Дж	M2 · KT · C-E
Мощность	ватт	W	Вт	Wa·KL·C-s
Количество электричества	кулон	С	Кл	c-A
Электрическое напряжение	вольт	V	В	M2-KF-C-3-A-1
Электрическая емкость	фарад	F	Ф	M-3KL-1 · C 4 · A2
Электрическое сопротивление	ОМ	Ω	OM	M2-KF-C-3-A-4
Электрическая проводимость	сименс	S	CM	M-3KL-1-C3-A2
Поток магнитной индукции	вебер	W.p	B 6	M2 · Kr · C-1-A-1
Магнитная индукция	тесла	Т	Тл	кг с ⁻² · А-1
Индуктивность	генри	Н	Гн	M2 - KT - C-2 - A-
Световой поток	люмен	lm	лм	кд - ср
Освещенность	люкс	lx	лк	м ⁻² · кд · ср
Активность радионуклида	беккерель	Bo	Бк	c-1
Поглощенная доза ионизирующего излучения	грэй	Gy	Гр	M2 · C-2
Эквивалентная доза излучения	зиверт	Sv	33	M2 · C−2