

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

БЮРЕТКИ ИЗМЕРИТЕЛЬНЫЕ СТЕКЛЯННЫЕ ДЛЯ ХИМИЧЕСКИХ НЕАВТОМАТИЧЕСКИХ ГАЗОАНАЛИЗАТОРОВ

МЕТОДЫ И СРЕДСТВА ПОВЕРКИ

FOCT 8.269-77

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СТАНДАРТОВ

СОВЕТА МИНИСТРОВ СССР

МОСКЕВ

РАЗРАБОТАН Казанским филиалом Всесоюзного научно-исследовательского института физико-техничьских и радиотехнических измерений [КФ ВНИИФТРИ]

Директор **Н. М. Хусаинов** Руководитель темы и исполнитель **П. К. Заяц**

ВНЕСЕН Управлением приборостроения, средств автоматизации и систем управления Госстандарта СССР

Начальник И. А. Алмазов

подготовлен к утверждению

Управлением приборостроения, средств автоматизации и систем управления Госстандарта СССР

Начальник И. А. Алмазов

Всесоюзным научно-исследовательским институтом метрологической службы [ВНИИМС]

Директор Н. Г. Рамбиди

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 24 ноября 1977 г. № 2754

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Тосударственная система обеспечения единства измерений БЮРЕТКИ ИЗМЕРИТЕЛЬНЫЕ СТЕКЛЯННЫЕ ДЛЯ ХИМИЧЕСКИХ НЕАВТОМАТИЧЕСКИХ ГАЗОАНАЛИЗАТОРОВ

ГОСТ 8.269—77

Методы и средства поверки

State system for ensuring the uniformity of measurements. Measuring glass burettes for chemical non-automatic gas analyzers. Methods and means of verification

Взамен Инструкции 256—*57*

Постановлением Государственного комитета стандартов Совета Министров СССР от 24 ноября 1977 г. № 2754 срок введения установлен с 01.01. 1979 г.

Настоящий стандарт распространяется на стеклянные измерительные бюретки для химических неавтоматических газоанализаторов (далее — бюретки) по ГОСТ 6329—74, ГОСТ 7018—75, ГОСТ 10713—75 и бюретки к аппарату для анализа кислорода и устанавливает методы и средства их поверки при выпуске из производства.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки бюреток выполняют операции и применяют средства, указанные в таблице.

Наименования операций	Пункты стандарта	Средства поверки и их нормативно- технические характеристики
Внешний осмотр Определение основных размеров	4.1 4.2	Штангенциркуль с пределом измерения до 250 мм и ценой деления 0,1 мм по ГОСТ 166—73; циркуль; измерительная линейка по ГОСТ
Проверка качества отжига стекла	4.3	427—75 Полярископ-поляриметр типов ПКС-125 по ГОСТ 5.1830—73, ПКС-250 по ГОСТ 5.1831—73 и полярископ типа ПКС-500

Издание официальное

Перепечатка воспрещена-

Наименования операций	Пункты стандарта	Средства поверки и их нормативно- технические характеристики
Проверка герметичности кранов	4.4	Вакуумная установка, обеспечи- вающая разряжение не менее
Определение вместимости бюреток. к аппарату для анализа кислорода	4.5.1	380 мм рт. ст Образцовая пипетка 1-го разряда по ГОСТ 8.100—73 и обязательному приложению настоящего стандарта; лабораторный термометр с ценой деления 0,1°С по ГОСТ 215—73, секундомер по ГОСТ 5072—72; дистиллированная вода по ГОСТ 6709—72
к переносному химическому сте- клянному газоанализатору ручно- го действия ГХП	4.5.2	
к газоанализатору для общего анализа природных и промышленных газов ГХЛ	4.5.3	
к газоанализатору для определения содержания углерода и серы в стали, чугуне и других материалах ГОУ	4.5.4	

2. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКИ К НЕЙ

2.1. При проведении поверки должны быть соблюдены следующие условия:

температура воды и окружающей среды 20±5°C;

изменение температуры воды во время поверки не должно превышать 2°C. Температуру воды измеряют в резервуаре, из которого наполняют бюретку, через каждый час работы;

температуру воды и окружающей среды измеряют с погрешностью не более ± 0.5 °C.

- 2.2. Вместимость бюретки определяют объемным методом по образцовой пипетке 1-го разряда. Допускается вместимость бюретки определять массовым методом по ГОСТ 8.234—77.
- 2.3. Время слива воды из образцовой пипетки установлено в технической документации на образцовую пипетку.
- 2.4. При поверке бюретки отсчитывание производят по нижне-му краю мениска.

2.5. Перед проведением поверки необходимо:

проверить чистоту бюретки. При необходимости бюретку очищают. Способы очистки — по ГОСТ 8.234—77:

выдержать бюретку, находившуюся в температурных условиях, отличных от условий поверки, или подвергшуюся нагреванию, не менее 3—5 ч при температуре окружающей среды.

2.6. При снятии показаний для получения резко очерченного контура мениска пользуются экраном из молочного стекла, стекла, окрашенного белой краской или экраном из белой бумаги.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. Требования безопасности при поверке бюреток к газоанализаторам — по ГОСТ 8.234—77.

4. ПРОВЕДЕНИЕ ПОВЕРКИ

4.1. Внешний осмотр

4.1.1. При внешнем осмотре должно быть установлено соответствие бюретки:

к аппарату для анализа кислорода — требованиям технической документации;

к переносному химическому стеклянному газоанализатору ручного действия — требованиям ГОСТ 6329—74;

к газоанализатору для общего анализа природных и промышленных газов — требованиям ГОСТ 7018—75;

к газоанализатору для определения углерода и серы в стали, чугуне и других материалах — требованиям ГОСТ 10713—75.

- 4.1.2. Соответствие стекла требованиям ГОСТ 21400—75 должно быть подтверждено документом, удостоверяющим, что стекло, примененное для изготовления бюретки, отвечает этим требованиям.
- 4.2. Основные размеры бюреток должны соответствовать значениям, указанным в стандартах технических требований к соответствующим изделиям.
- 4.3. Качество отжига стекла проверяют по ГОСТ 7329—74 на полярископе или полярископе-поляриметре. Разность ходов двух лучей не должна превышать значений, указанных в стандартах технических требований к соответствующим изделиям.
 - 4.4. Герметичность кранов проверяют по ГОСТ 7995-68.

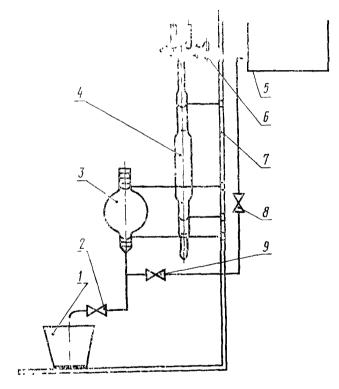
4.5. Определение вместимости бюреток.

4.5.1. Определение вместимости бюреток к аппарату для анализа кислорода

В бюретке определяют следующие интервалы шкалы:

9—10% с ценой деления 0,1% О₂;

15—75% с ценой деления 1% О₂:


85—95% с ценой деления 0,2% O₂;

98—100% с ценой деления 0,05% O₂;

0 - 100%.

Примечание. 1 мл вместимости бюретки по воде соответствует 1% О2.

Вместимость бюретки определяют в последовательности, изложенной ниже.

I—стакан; 2, 8, 9—краны; 3—образцовая пипетка 1-го разряда; 4—поверяемая бюретка; 5—резервуар для воды; 6—двухходовой кран; 7—штатив

Черт. 1

Поверяемую бюретку 4 (черт. 1) укрепляют на штативе 7 рядом с образцовой пипеткий 3 (вместимость образцовой пипетки равна вместимости проверяемого интервала) так, чтобы нижняя отметка шкалы бюретки была на 5 мм выше верхней отметки на верхней трубке образцовой пипетки;

открывают двухходовой кран 6, краны 8 и 9 и заполняют систему водой из резервуара для воды 5. При достижении мениска воды в нижней трубке образцовой пипетки на 5 мм выше отметки номинальной вместимости кран 9 закрывают;

заполняют поверяемую бюретку водой так, чтобы мениск воды поднялся на 5 мм выше верхней отметки шкалы бюретки и проверяют визуально отсутствие малейших пузырьков воздуха во всей системе. При наличии пузырьков воздуха сливают воду, открыв краны 2, 8 и 9; устанавливают в бюретке мениск воды на верхней отметке шкалы. Для этого сливают лишнюю воду через краны 2 и 9 в стакан 1. Открывают кран 2, сливают воду из образцовой пипетки, не допуская снижения мениска воды в нижней трубке образцовой пипетки 3 ниже отметки; открывают кран 9, переливают воду в образцовую пипетку из первого проверяемого интервала бюретки. При этом сначала уровень воды в бюретке устанавливают на 5 мм выше проверяемой отметки; закрывают кран 9, выдерживают систему в течение 15 с; открывают кран 9, доводят мениск воды в бюретке до проверяемой отметки шкалы;

проверяют положение уровня воды в верхней трубке образцовой пипетки по нанесенным на ней делениям и делают заключение о вместимости проверяемого интервала бюретки;

открывают кран 2, сливают воду из образцовой пипетки 3 в стакан 1; сливают воду из стакана 1 в резервуар для воды 5;

снимают образцовую пипетку 3 со штатива 7, укладывают ее в футляр. Затем устанавливают образцовую пипетку, номинальная вместимость которой соответствует вместимости второго, третьего, четвертого проверяемых интервалов и полной вместимости; при этом выполняют операции в той же последовательности, что и при проверке первого интервала.

Допускаемые отклонения от номинальной вместимости проверяемого интервала шкалы и полной вместимости бюретки не должны превышать значений, указанных в технической документации.

4.5.2. Определение вместимости бюретки к переносному химическому стеклянному газоанализатору ручного действия ГХП

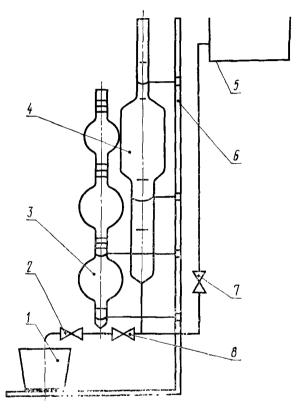
Вместимость определяют в следующих интервалах:

0—50; 0—75 и 0—100 мл — для бюретки вместимостью 100 мл.

0—50; 0—63 и 0—75 мл — для бюретки вместимостью 75 мл.

4.5.2.1. Вместимость расширенной части бюретки определяют

следующим образом.


Укрепляют поверяемую бюретку 4 (черт. 2) на штативе 6 рядом с образцовой пипеткой 3, номинальная вместимость расширений которой равна вместимости проверяемых интервалов, так, чтобы нижняя отметка шкалы проверяемого интервала бюретки была на 5 мм выше верхней отметки на верхней трубке образцовой пипетки:

поверяемую бюретку 4 соединяют с резервуаром для воды 5 и образцовой пипеткой 3 при помощи резиновой трубки;

открывают краны 7 и 8 и заполняют систему водой из резервуара для воды 5;

закрывают кран 8 в тот момент, когда мениск воды в верхней трубке образцовой пипетки поднимется на 5 мм выше отметки номинальной вместимости;

заполняют водой поверяемую бюретку до тех пор, пока мениск воды не поднимется на 5 мм выше верхней отметки шкалы бюретки;

1—стакан; 2; 7; 8—краны; 3—образцовая пипетка 1-го разряда; 4—поверяемая бюретка; 5—резервуар для воды; 6—штатив

Черт. 2

закрывают кран 7;

проверяют визуально отсутствие пузырьков воздуха в системе; открыв краны 2 и 8 и выпуская лишнюю воду, устанавливают мениск воды в бюретке точно на верхней отметке шкалы. При этом снижение уровня воды в пипетке ниже отметки номинальной вместимости не допускается;

закрывают краны 2 и 8;

открывают кран 2, сливают воду из образцовой пипетки;

устанавливают мениск воды в образцовой пипетке на нижнюю отметку;

открывают кран δ , переливают воду из проверяемого интервала бюретки в образцовую пипетку δ ;

закрывают кран δ при установлении уровня воды в бюретке на 5 мм выше проверяемой отметки;

выдерживают систему в течение 15 с;

открывают кран 8, доводят мениск воды в бюретке до проверяемой отметки шкалы;

проверяют положение уровня воды в верхней трубке первого расширения образцовой пипетки по нанесенным на ней делениям и дают заключение о вместимости проверяемого интервала бюретки;

4.5.2.2. Вместимость суженной части бюретки определяют сле-

дующим образом:

открывают краны 7 и 8 и заполняют поверяемую бюретку и образцовую пипетку так, как указано в п. 4.5.2.1;

открывают кран 2, сливают воду из образцовой пипетки до нижней отметки;

закрывают кран 2;

открывают кран 8, переливают воду в образцовую пипетку 3 из второго проверяемого интервала бюретки;

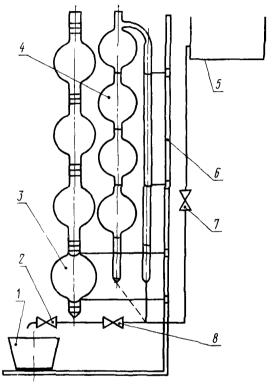
при установлении уровня воды в бюретке на 5 мм выше проверяемой отметки закрывают кран 8;

выдерживают систему в течение 15 с;

открывают кран 8, доводят мениск воды в бюретке до проверяемой отметки шкалы;

проверяют положение уровня воды в верхней трубке второго расширения образцовой пипетки по нанесенным на ней делениям и дают заключение о вместимости проверяемого интервала;

выполняют операции при проверке третьего интервала в той же последовательности, что и при проверке второго интервала бюретки. Отличие состоит в том, что уровень воды в поверяемой бюретке при сливе воды в образцовую пипетку 3 понижают до нижней отметки шкалы бюретки.


4.5.2.3. Допускаемые отклонения от номинальной вместимости проверяемых интервалов шкалы и полной вместимости бюретки не должны превышать значений, указанных в ГОСТ 6329—74.

4.5.3. Определение вместимости бюретки к стеклянному химическому лабораторному газоанализатору ГХЛ

4.5.3.1. Вместимость левой части бюретки № 1 определяют в следующих интервалах: 0—20; 0—40; 0—60 и 0—80 мл в последовательности, изложенной ниже.

Укрепляют поверяемую бюретку 4 (черт. 3) на штативе 7 рядом с образцовой пипеткой 3, номинальная вместимость расширений которой равна вместимости проверяемых интервалов, так, чтобы нижняя отметка шкалы проверяемого интервала была на 5 мм выше отметки на верхней трубке образцовой пипетки 3;

левую часть поверяемой бюретки 4 соединяют с резервуаром для воды 5 и образцовой пипеткой 3 при помощи резиновой трубки;

i—стакан; 2, 7, δ —краны; 3—образцовая пипетка 1-го разряда, 4—поверяемая бюретка, δ —резервуар для воды; δ —щтатив

Черт 3

открывают краны 7 и 8 и заполняют систему водой из резервуара для воды 5:

закрывают кран 8 в тот момент времени, когда мениск воды в трубке образцовой пипетки 3 поднимется на 5 мм выше отметки номинальной вместимости четвертого расширения;

заполняют водой левую трубку бюретки до тех пор, пока не произойдет слив воды из правой трубки бюретки;

закрывают кран 7;

проверяют визуально отсутствие пузырьков воздуха в системе;

открывают кран 2, сливают воду из образцовой пипетки;

устанавливают мениск воды в нижней трубке образцовой пипетки на отметку, соответствующую проверяемой отметке:

закрывают кран 2;

открывают кран 8 и переливают воду в образцовую пипетку 3 из первого проверяемого интервала левой трубки бюретки;

закрывают кран 8 при установлении уровня воды в левой труб-

ке бюретки на 5 мм выше проверяемой отметки;

выдерживают систему в течение 15 с;

открывают кран 8 и доводят мениск воды в левой трубке бюретки до проверяемой отметки;

определяют отклонение вместимости проверяемого интервала бюретки по отметкам на верхней трубке первого расширения образцовой пипетки и дают заключение о вместимости проверяемого интервала бюретки;

определяют вместимость второго проверяемого интервала бюретки;

открывают краны 7 и 8, заполняют систему водой из резервуара для воды 5;

затем выполняют операции так же, как и при проверке первого интервала бюретки;

при проверке третьего и четвертого интервалов выполняют операции в той же последовательности, что и при проверке второго интервала.

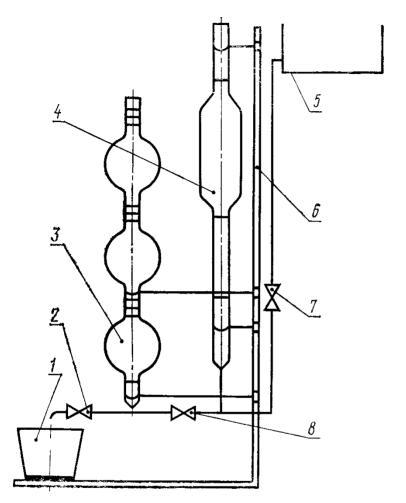
4.5.3.2. Вместимость правой части бюретки № 1 определяют

в следующих интервалах:

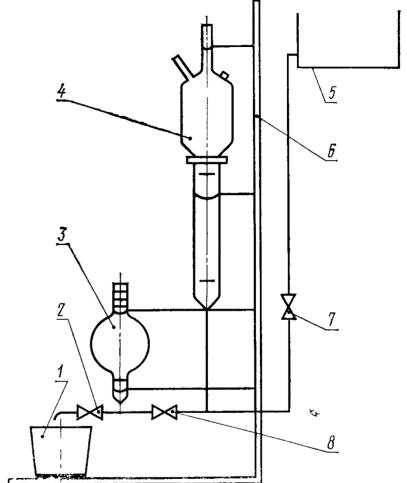
0—1; 0—6; 0—1; 0—16; 0—21 мл для бюретки вместимостью 21 мл:

0—1; 0—6; 0—11; 0—16; 0—22 мл для бюретки вместимостью 22 мл.

Вместимость правой части бюретки № 1 определяют следую-


щим образом.

Правую часть поверяемой бюретки 4 (черт. 3) соединяют с резервуаром для воды 5 и образцовой пипеткой 3, номинальная вместимость расширений которой равна вместимости проверяемых интервалов, при помощи резиновой трубки;


выполняют операции поверки в той же последовательности, что и при поверке левой части бюретки № 1 (п. 4.5.3.1).

4.5.3.3. Вместимость бюретки № 2 (черт. 4) определяют в следующих интервалах 0—2; 0—5 мл и на полную вместимость по методике, изложенной в п. 4 5.3.1.

4.5.3.4. Допускаемые отклонения от номинальной вместимости проверяемых интервалов шкалы и полной вместимости бюреток № 1 и 2 не должны превышать значений, указанных в ГОСТ 7018—75.

1—стакан; 2; 7; 8—краны; 3—образцовая пипетка 1-го разряда, 4—поверяемая бюретка; 5—резервуар для воды; 6—штатив Черт. 4

1—стакан; 2; 7; 8—краны; 3—образцовая пипетка 1-10 разряда; 4—поверяемая бюретка: 5—резервуар для воды; 6—штатив Черт. 5

4.5.4. Определение вместимости бюретки газоанализатора для измерения содержания углерода и серы в стали, чугуне и других материалах типа ГОУ

Вместимость бюретки (черт. 5) определяют сравнением объема поверяемой бюретки с объемом образцовой пипетки, номинальная вместимость которой равна вместимости поверяемой бюретки, по методике п. 4.5.2.1.

Допускаемые отклонения от номинальной вместимости бюретки не должны превышать значений, указанных в ГОСТ 10713—75.

5. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

5.1. Стеклянные измерительные бюретки для химических неавтоматических газоанализаторов, выпускаемые из производства и прошедшие поверку с положительными результатами, клеймят.

5.2. Клеймо должно быть нанесено методом, приведенным в

ΓΟCT 8.234—77.

5.3. Бюретки, не удовлетворяющие требованиям стандартов, клеймению не подлежат и к применению не допускаются.

ПРИЛОЖЕНИЕ Обязательное

ΜЛ

						1.71						
		Пред	цел допу									
поверяемой ин	Проверяемый интервал бюретки	аппарату для анализа кислорода	газоанализа- тору типа ГХП		газоанализатору типа ГХЛ			газоанализатору типа ГОУ для исполнений			Предел допускаемой погрешности интервала	
			№ 1	N 2		грубкой правой	100	1	2	3	образцовых пипеток 1-го разряда	
100	0—10 15—75 85—95 98—100 0—100	$\pm 0, 1$ $\pm 0, 5$ $\pm 0, 2$ $\pm 0, 05$ $\pm 0, 25$				1111	1111			- - -	± 0.04 ± 0.2 ± 0.08 ± 0.02 ± 0.1	
100	0—50 0—75 0—100	-	±0,2	 		1 1	111	-			±0,08	
75	0—50 0—63 0—75	 		±0,1		<u> </u>	111				±0,04	
80	0—20 0—40 0—60 0—80	- - - -			±0,1	1111	1111				±0,04	

Предел допускаемой погрешности поверяемой бюретки к										
Троверяемый интервал	аппарату	газоанализа- тору типа ГХП		газоанализатору типа ГХЛ			газоанализатору типа ГОУ для исполнений			Предел допускаемой погрешности интервала образцовых пипеток
оюретки	для анализа кислорода	№ 1	№ 2			№ 2	1	2	3	1-го разряда
0—1 0—6 0—11 0—16 0—21 (22)		1111	-		±0,05	1111	1 1 1 1			±0,02
0—2 0—5 0—100	-					$\pm 0,02 \\ \pm 0,02 \\ \pm 0,1$	111		-	$\pm 0,008 \\ \pm 0,008 \\ \pm 0,04$
0-5		_	_	_	_	-	±0,02			±0,08
0-30								±0,1		±0,04
0—90	-		_				_		±0,2	±0,08
	0—1 0—6 0—11 0—6 0—11 0—16 0—21 (22) 0—2 0—5 0—100 0—5	Проверяемый аппарату для анализа кислорода О—1 О—6 О—11 О—16 О—21 (22) О—2 О—5 О—100 О—5 О—30 —	Проверяемый аппарату для анализа кислорода О—1 О—6 О—11 О—16 О—21 (22) — О—2 О—5 О—100 — О—5 О—30 — Пазоана тор типа Тазоана тор типа О Т — О—1 О—1 О—1 О—1 О—1 О—1 О—1 О—2 О—2 О—2 О—5 О—1 О—3 О—5 О—1 О—5 О—1 О—5 О—1 О—5 О—1 О—5 О—1 О—5 О—5 О—5 О—1 О—5 О—5 О—5 О—1 О—5 О—5 О—5 О—5 О—5 О—5 О—6 О—7	Проверяемый интервал бюретки аппарату для анализа кислорода газоанализатору типа ГХП 0—1 — — 0—6 — — 0—11 — — 0—21 (22) — — 0—5 — — 0—30 — —	Гроверяемый интервал бюретки газоанализатору типа ГХП газоанализатору типа ГХП № 1 № 2 0—1 —	Гроверяемый интервал бюретки аппарату для анализа кислорода Газоанализатору типа ГХП газоанализат типа ГХЛ 0—1 —	Проверяемый интервал бюретки аппарату для анализа кислорода Газзоанализа-тору типа ГХЛ Разоанализатору типа ГХЛ № 1 № 2 № 1 с трубкой девой правой № 2 0—1 —	Проверяемый интервал бюретки аппарату для анализа кислорода газоанализатору типа ГХЛ тазоанализатору типа ГХЛ	Проверяемый интервал бюретки аппарату бюретки газоанализатору типа ГХЛ газоанали	Проверяемый интервал бюретки аппарату бюретки газоанализатору типа ГХЛ газоанализатору типа ГХЛ газоанализатору типа ГХЛ газоанализатору типа ГХЛ газоанализатору типа ГОУ для исполнений 0—1 № 1 № 2 № 1 с трубкой девой правой № 2 1 2 3 0—1 — — — — — — — — — — — — — — — — — — —

Примечание. Вместимость образцовых пипеток 1-го разряда при аттестации должна быть приведена к температуре 20°C, а при поверке бюретки к газоанализатору типа ГОУ — к 16°C.

МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ (СИ)

	Единица					
Величина	Наименование		аченяю			
	<u></u>	руесное	международное			
OCHOBH LIE	ЕДИНИЦЫ		1			
ДЛИНА	метр	M	m			
MACCA	килограмм	Kr	kg			
BPEMA	секунда	Ç	S A			
СИЛА ЭЛЕКТРИЧЕСКОГО ТОКА	ампер	A	A			
ТЁРМОДИНАМИЧЕСНАЯ ТЕМПЕРА- ГУРА КЕЛЬВИНА	нел ьв ин	н	K cđ			
СИЛА СВЕТА	кандел а	кд ј	Cu			
ДОПОЛНИТЕЛЬ	ные единицы					
Плоский угол	радиан	рад	rad			
Гелеоный угол	стерадиан	ср	ST			
·	•	,				
производнь		ا و ا	m_3			
Площадь	квадратный метр	м ² м ⁸	m ³			
Объем, вместимость	кубический метр					
Плотность	килограмм на	КГ/М ⁸	kg/m³			
Support	кубический метр	M/C	m/s			
Экорость Угловая ск о рость	метр в секунду радиан в секунду		rad/s			
Сила, сила тяжести (вес)	радиан в селунду Ньютон	H	N			
Давление, механическое напряжение	паскаль	Па	Pa			
Работа, энергия, количество теплоты	джоуль	Дж	_J_			
Лощность, тепловой поток	ватт	Вт	W			
Количество электричества, электриче-	кулон	Кл	C			
ский заряд		_	77			
Электрическое напряжение, электри-	вольт	В	V			
естии потенциал, разность электри-						
неских потенциалов, электродвижущая ()				
Электрическое сопротивление	OM	Om	Q			
Электрическая проводимость	Сименс	CM	& S F			
Элентрическая емкость	фарада	Ф	F			
Магнитный поток	вебер	Вб	Wb			
Индуктивность, взаимная индуктивность	генри	Г	Н			
Удельная теплоемкость	джоуль на	Дж/(кг.К)	$J/(kg \cdot K)$			
i	килограмм-кельвин	•	W/(m·K)			
еплопрово дность	ватт на метр-кельвин	~:/(m·11)	44 /(mr - 17)			
Световой поток	люмен	ЛМ	1m			
Пркость	кандела На	КД/М ²	cd/m²			
Ì	квадратный метр	лк	lx			

МНОЖИТЕЛИ И ПРИСТАВКИ ДЛЯ ОБРАЗОВАНИЯ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЙИНАВОЛЕНИИ И И И ИНИВОВЕНИЕМ

Множитель,		Обозн	вчение	Множитель,		Обозначение		
единийя умножается на который	Приставна	русеков	менкду- народное	на который умножается едини	Приставна	русское	между- народнов	
1012	тера	T	T	10-2	(санти)	C	С	
10°	гига	Г	G	10-*	милли	M	m	
19°	Mera	M	M	10-4	мищре	MK	p	
10°	кило	к	k	10-	нано	н	n	
10°	(гекта)	ľr	h	10-12	THEHO	R	P	
101	(дена)	да	da	[[19 ⁻¹⁵ [фемего	ф	f	
10-1	(деци)	Д	d	10~18	2710	a		

Примечение: В снобких учеземы приставих, которые допускается применять тельке в неименавантях предвад дольных единиц, уже пелучениях мирокое распрастранение (непример, гентер, декаматр, декаматр, сантаматр).