

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИСТОЧНИКИ СВЕТА ДЛЯ ИЗМЕРЕНИЙ ЦВЕТА

ТИПЫ, ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ. МАРКИРОВКА

FOCT 7721—89

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИСТОЧНИКИ СВЕТА ДЛЯ ИЗМЕРЕНИЙ ЦВЕТА

Типы. Технические требования. Маркировка

FOCT

Illuminants for colour measurements. Types. Technical requirements. Marking

7721---89

OKII 44 3490

Срок действия

с 01.07.90 до 01.07.2000

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на источники света для освещения образцов материалов при измерениях их цвета.

1. ТИПЫ

Настоящий стандарт устанавливает следующие типы стандартных источников света:

а) А — газополная электрическая лампа накаливания с коррелированной цветовой температурой излучения $T = 2856 \ \mathrm{K}$ (приложение 1).

Воспроизводит условия искусственного освещения электрическими лампами накаливания;

б) В — источник света Λ в комбинации с точно определенным жидкостным или стеклянным светофильтром, предназначенным для создания излучения с коррелированной цветовой температурой T = 4874 K (приложение 1).

Воспроизводит условия прямого солнечного освещения;

в) C — источник света A в комбинации с точно определенным жидкостным или стеклянным светофильтром, предназначенным для создания излучения с коррелированной цветовой температурой T = 6774 K (приложение 1).

Воспроизводит условия освещения рассеянным дневным светом:

г) D_{65} — должен воспроизводить излучение с коррелированной цветовой температурой T = 6504 K (приложение 1).

Перепечатка воспрещена

Воспроизводит условия освещения усредненным дневным светом*. Используется для измерения цвета люминесцирующих образцов.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Источники света А, В, С и D₆₅ должны быть аттестованы по координатам цветности х, у, определенным в системе цветовых координат Х, У, Z, установленной МКО в 1931 г., и должны соответствовать значениям, указанным в табл. 1. При этом допускается отклонение координат цветности от номинального значения в пределах ± 0.02 .

Таблица 1

Источники света	Координаты цветности			
	x	у		
A	0,448	0,407 0,352		
$B \longrightarrow B$	0,348 0,310	0,352 0,316		
$\overset{\circ}{\mathrm{D}}_{65}$	0,310	0,310		

2.2. При создании источников света типов В и С допускаемое отклонение координат цветности источника света А от значений. указанных в табл. 1, в пределах $\pm 0,003$.

2.3. Напряжение и ток источников света А, В и С следует контролировать приборами класса не ниже 0,2 по ГОСТ 8711.

2.4. Технические требования к светофильтрам

2.4.1. Жидкостный светофильтр должен быть составлен из двух растворов, которые заполняют каждый свое отделение двойной кюветы из бесцветного химически стойкого оптического стекла. Толщина слоя каждой жидкости должна быть $(10\pm0,05)$ мм. Растворы жидкостных светофильтров должны иметь состав,

приведенный в табл. 2.

Таблица 2

Dearner	Coord Page 1		Норма для источника света			
Раствор	Состав раствора	В	С			
1	Сульфат меди CuSO₄·5H₂O, г Маннит С₀H₃(OH)₀, г	2,452 2,452	3,412 3,412			
2	Пиридин C_5H_5N , см ³ Дистиллированная вода, см ³ Кобальт-аммоний сульфат CoSO ₄ (NH ₄) ₂ ·SO ₄ ·6H ₂ O, г	30,0 1000,0 21,71	30,0 1000,0 30,58			

^{*} В настоящее время нет рекомендации Международной комиссии по освещению (МКО) для воспроизведения стандартного источника D_{65} .

Продолжение табл. 2

Раствов	Состав раствора	Норма для источника света			
Раствор	Состав раствора	В	С		
	Сульфат меди CuSO ₄ ·5H ₂ O, г Серная кислота (плотность 1,835 г/см³),	16,11	22,52		
	г Дистиллированная вода, см ³	10,0 1000,0	10,0 1000,0		

- 2.4.2. Растворы следует приготовлять заново через 2 мес из химически чистых реактивов.
- 2.4.3. Стеклянные светофильтры могут быть трех категорий: І категории — должны изготовляться из четырех склеенных плоскопараллельных пластинок цветного стекла марок ПС5, ПС14. СЗС17 и ЖС4 по ГОСТ 9411—81:

II и III категорий — должны изготовляться из трех склеенных плоскопараллельных пластинок цветного стекла марок ПС5, ПС14 и СЗС17 по ГОСТ 9411—81.

Способ определения толщины компонентов, при которых составной светофильтр в сочетании с источником света А воспроизводит источники света В и С, приведен в приложении 2*.

2.4.4. Предельные отклонения координат цветности источников Δx , Δy , рассчитанные для конкретного светофильтра, от значений, указанных в табл. 1, коэффициенты пропускания светофильтра τ_{ϕ} и их предельные отклонения $\Delta \tau_{\phi}$ приведены в табл. 3. Совокупность указанных параметров определяет категорию светофильтра.

Таблица 3

Источ- ники света	Қате- гория фильтра	Предельные отклонения $\Delta x,\ \Delta y$	τ _ф , %, не менее	Δτ _ф , %, не мене е
В	I	$\pm 0,005$ при условии, что — $0,001 \leqslant \Delta x^{\text{B}}$	10.5	0.0
C	II II	— Лув ≤ 0,002 ±0,008 ±0,012 ±0,005 при условии, что ±0,001 ≤ Дхс—	13,5 18,0 23,0	-2,0 -3,0 -3,0
C	II III	$\pm 0,000$ при условии, что $\pm 0,001 \leqslant \Delta x^2 - \Delta y^2 \leqslant 0,002 \pm 0,010 \pm 0,015$	7,5 9,0 12,0	-1,0 $-1,5$ $-2,0$

3. МАРКИРОВКА

3.1. Маркировка ламп накаливания, применяемых в источниках света типов A, B, C, D₆₅, должна содержать порядковый номер по системе предприятия-изготовителя.

^{*} Допускаются другие способы определения, обеспечивающие выполнение требований настоящего стандарта.

3.2. Стеклянные светофильтры должны маркироваться порядковым номером и обозначением типа источника (В или С).

3.3. Қаждый источник света должен быть снабжен свидетельством о метрологической аттестации согласно ГОСТ 8.326, удостоверяющим его качество и соответствие требованиям настоящего стандарта.

Свидетельство должно содержать:

тип и номер лампы накаливания;

значения напряжения и тока питания лампы;

погрешность воспроизведения координат цветности;

обозначение настоящего стандарта;

дату поверки источника;

наименование предприятия-изготовителя, его местонахождение

(город) или условный адрес.

3.4. Каждый светофильтр должен сопровождаться документом, удостоверяющим его качество и соответствие требованиям настоящего стандарта.

Документ должен содержать:

тип и номер светофильтра;

координаты цветности светофильтра x, y и координату цвета \mathcal{Y} :

погрешность измерения по координатам цветности x, y и по координате цвета $\mathcal Y$ для источника света типа A;

дату выпуска светофильтра.

ОТНОСИТЕЛЬНОЕ СПЕКТРАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ЭНЕРГИИ ИЗЛУЧЕНИЯ Φ_{λ} СТАНДАРТНЫХ ИСТОЧНИКОВ СВЕТА ТИПОВ A, B, C и D₈₅

Таблица 4

Длина волны λ, нм	Φ Å	Φ Β λ	Φ λ C	Φ λ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ
300	0,93	0,00	0,00	0,03
305	1,13	0,00	0,00	1,7
310	1,36	0,00	0,00	3,3
315	1,62	0,00	0,00	11,8
320	1,93	0,02	0,01	20,2
325	2,27	0,26	0,20	28,6
330	2,66	0,50	0,40	37,1
335	3,10	1,45	1,55	38,5
340	3,59	2,40	2,70	39,9
345	4,14	4,00	4,85	42,4
350	4,74	5,60	7,00	44,9
355	5,14	7,60	9,95	45,8
360	6,15	9,60	12,90	46,6
365	6,95	12,40	17,20	49,4
370	7,82	15,20	21,40	52,1
375	8,77	18,80	27,50	51,0 50,0
380	9,79	22,40	33,00	52,3
385	10,90	26,85	39,92 47,40	54,6
390	12,09	31,30	55,17	68,7
395	13,36	36,18	63,30	82,8
400	14,71	41,30	71,81	87,2
405	16,15	46,62 52,10	80,60	91,5
410	17,68 19,29	57,70	89,53	92,4
115	21,00	63,20	98,10	93,4
420	22,79	68,37	105,80	90.0
425 430	24,67	73,10	112,40	86,7
435	26,64	77,31	117,75	95,8
440	28,70	80,80	121,50	104,9
445	30,85	83,44	123,45	111,0
450	33,0 9	85,40	124,00	117,0
455	35,41	86,88	123,60	117,4
460	37,82	88,30	123,10	117,8
465	40,30	90,08	123,30	116,4
470	42,87	92,00	123,80	114,9
475	45,52	93,75	124,09	115,4
480	48,25	95,20	123,90	115,9
485	51,04	96,23	122,92	112,4
490	53,91	96,50	120,70	108.8
495	56,85	95,71	116,90	109,1
500	59,86	94,20	112,10	1 109,4

FOCT 7721-89 C. 6

Продолжение табл. 4

			11 pode	олжение табл. 4
Длина волны λ, нм	Φ , Α	Φλ	ΦC	Φ ^{D₆₅*}
505 510 515 520 525 530 535 540 545 550 565 570 575 580 590 605 610 615 620 625 630 635 640 645 650 665 670 675 680 685 690 695 700 705 710 715	62,93 66,06 69,25 72,50 75,79 79,13 82,52 85,95 89,41 92,91 96,44 100,00 103,58 107,18 110,80 114,44 118,08 121,73 125,39 129,04 132,70 136,34 139,99 143,62 147,23 150,83 154,42 157,98 161,51 165,03 168,51 171,96 175,38 178,77 182,12 185,43 188,70 191,93 195,12 198,26 201,36 204,41 207,41	92,37 90,70 89,65 89,50 90,43 92,20 94,46 96,90 99,16 101,00 102,20 102,80 102,92 102,60 101,90 101,00 101,00 199,20 98,44 98,00 98,08 98,50 99,70 100,36 101,00 101,56 102,20 103,05 103,90 104,59 104,59 104,55 103,90 104,90 104,55 104,90 10	106,98 102,30 98,81 96,90 96,78 98,00 99,94 102,10 103,95 105,20 105,67 105,30 104,11 102,30 100,15 97,80 95,43 93,20 91,22 89,70 88,83 88,40 88,19 88,10 88,10 88,06 87,86 87,80 87,99 87,90 87,86 87,90 87	108,6 107,8 106,3 104,8 106,3 107,7 106,0 104,4 104,2 104,0 102,0 100,0 98,2 96,3 96,1 95,8 92,2 88,7 89,4 90,0 89,8 89,6 88,6 87,7 85,0 83,3 83,5 83,7 81,8 80,0 80,1 80,2 81,2 82,3 80,0 80,1 80,2 81,2 82,3 80,0 74,0 69,7 70,6 71,6 73,0 74,3 68,0
720 725 730 735 740 745 750	210,36 213,26 216,12 218,92 221,66 224,36 227,00 229,58	92,90 91,10 89,40 88,00 86,90 85,90 85,20 84,80	68,30 66,30 64,40 62,80 61,50 60,20 59,20 58,50	61,6 65,8 69,9 72,5 75,1 68,9 63,6 55,0

Продолжение табл. 4

Длина волны λ, нм			Φ λ C	Φ λ D ₆₅ *		
760	232.11	84,70	58,10	46,4		
765	234,59	84,90	58,00	56,6		
770	237,01	85,40	58,20	66,8		
775	239.36	86.10	58,50	65,1		
780	241,67	87.00	59,10	63,4		
785	243,91	_		63,8		
790	246,11			64,3		
795	248,24		_	61,9		
800	250,32		l —	59,5		
805	252,33			55,8		
018	254,30			52,0		
815	256,20		_	54,7		
820	258,06			57,4		
825	259,90		-	58,8		
830	261,59		<u> </u>	60,3		

^{*} В настоящее время нет рекомендации МКО для воспроизведения стандартного источника $D_{65}.$

ПРИЛОЖЕНИЕ 2 Справочное

СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ КОМПОНЕНТОВ СТЕКЛЯННЫХ СВЕТОФИЛЬТРОВ

1. Определение показателей поглощения стекол марок ПС 5, ПС 14, СЗС 17, ЖС 4—по ГОСТ 9411 для изготовления светофильтров

Для определения показателей поглощения $K_1(\lambda)$, $K_2(\lambda)$, $K_3(\lambda)$, $K_4(\lambda)$ стекол марок ПС 5, ПС 14, СЗС 17, ЖС 4 необходимо:

а) из каждой марки стекла изготовить образцы — плоскопараллельные полирозанные пластины толщиной (10 ± 1) мм.

Из стекол марок ЖС 4 и СЗС 17 дополнительно изготовить пластины толщиной (3 ± 0.5) мм для определения показателя поглощения в областях большой оптической плотности 380-420 нм — для первого стекла и 600-780 нм — для второго.

Погрешность измерения толщины изготовленных пластин не должна превышать ± 0.005 мм;

б) измерить коэффициенты пропускания изготовленных пластин с помощью спектрофотометра с двойной монохроматизацией света.

Составить таблицу коэффициента пропускания $\tau(\lambda)$ пластин для волн длин 380, 390, ..., ..., 780 нм через 10 нм.

Перевести полученные значения $\tau(\lambda)$ в значения оптической плотности $D'(\lambda)$ по табл. 5:

в) определить оптическую плотность $D''(\lambda)$ массы стекла внесением поправки D_0 на отражение света от двух поверхностей по формуле:

$$D''(\lambda) = D'(\lambda) - D_{\rho}$$
 , (1) где D_{ρ} (ПС 5) = 0,057, D_{ρ} (СЗС 17) = 0,037, D_{ρ} (ПС 14) = 0,033, D_{ρ} (ЖС 4) = 0,052.

Примечание. В скобках указана марка стекла, к которому относится поправка $D_{\,
ho}\,$;

г) определить спектральные показатели поглощения каждого стекла $K(\lambda)$ по формуле

$$K(\lambda) = \frac{D''(\lambda)}{l} , \qquad (2)$$

где l — толщина пластины, мм.

Если полученные значения $K(\lambda)$ удовлетворяют требованиям на стекла I и II категорий по ГОСТ 9411, то из исследованного стекла изготавливают пластины (компоненты) сложного светофильтра требуемых размеров.

2. Определение толщины компонентов светофильтров

Толщина компонента из стекла марки ЖС 4 установлена равной 1 мм. Толщины компонентов из стекол марок ПС 5, ПС 14, СЗС 17 для фильтров источников В и С определяют:

для фильтров I категории по формуле

$$K_1(\lambda)l_1+K_2(\lambda)l_2+K_3(\lambda)l_3=D(\lambda)-K_4(\lambda), \qquad (3a);$$

для фильтров II и III категорий без стекла марки ЖС 4 по формуле

$$K_1(\lambda) l_1 + K_2(\lambda) l_2 + K_3(\lambda) l_3 = D(\lambda),$$
 (36),

где l_1 , l_2 , l_3 — толщины стекол марок ПС 5, ПС 14, СЗС 17 рассчитываемого светофильтра, а $D(\lambda)$ — оптическая плотность светофильтров источников света типов В или С, приведенные в табл. 6.

Оптическая плотность $D(\lambda)$, используемая при расчете толщины компонентов стеклянных светофильтров, воспроизводящих источники света типов В и С (для

трех категорий фильтров).

Таблица, связывающая оптическую плотность D с коэффициентом пропускания τ

Таблина 5

								1 2	олиц	a o
D*	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0.00	1.0000	0.9977	0.9954	0,9931	0.9908	0.9885	0.9863	0.9840	0.9817	0.9795
0.01		0.9750				0,9660		0.9616		
0,02				0,9484		0,9441		0,9397		
0.03		0,9311	0.9290	0,9268						
0.04			0,9078			0,9016				0,8933
0,05		0,8892				0,8810				
0,06		0,8690				0,8610				
0,07		0.8492		0,8453		0,8414				0,8337
0,08	0,8318	0,8298		0,8260	0,8241	0,8222	0.8203	0,8185	0.8166	0,8147
0,09	0,8128	0,8110	0,8091	0,8072	0,8054	0,8035	0,8017	0,7998	0.7980	
0,10		0,7925	0,7907	0,7889	0,7870	0,7852	0,7834	0,7816	0,7798	0,7780
0,11	0,7762	0,7745	0,7727	0,7709	0,7691	0,7674	0,7656	0,7638	0,7621	0,7603
0,12	0,7586	0,7568	0,7551		0,7516	0,7499	0,7482	0,7464	0.7447	0.7430
0,13	0,7413	0,7396	[0,7379	0,7362	0,7345	0,7328	0,7311	0,7294	0,7278	0,7261
0,14	0,7244	0,7228		0,7194	0,7178		0,7145	0,7128	0,7112	0,7096
0,15	0,7079	0,7063	0,7047		0,7014		0,6982	0,6966	0,6950	0,6934
0,16		0,6902	0,6887		0,6855		0,6823	0,6808	0,6792	0,6776
0,17	0,6761		0,6730		0,6699	0,6683	0,6668	0,6653	0,6637	0,6622
0,18	0,6607		0,6577	0,6561	0,6546	0,6531	0,6516	0,6501	0,6486	0,6471
0,19	0,6457				0,6397	0,6383	0,6368	0,6353	0,6339	0,6324
0,20	10,6310	0,6295	0,6281	0,6266		0,6237	0,6223	0,6209	0,6194	0,6180
0,21	0,6166	0,6152	0,6138	0,6123	0,6109	0,6095	0,6081	0,6067	0,6053	0,6039
0,22	0,6026	0,6012		0,5984		0,5957	0,5943	0,5929	0,5916	0,5902
0,23	0,5888			0,5848	0,5834		0,5808	0,5794	0,5781	0,5768
0,24	0,5754	0,5741	0,5728	0,5715	0,5702	0,5688	0,5675	0,5662	0,5649	
0,25	0,5623			0,5585		0,5559	0,5546	0,5533		0,5508
0,26 0,27	0,5495			0,5458		0,5432	0,5420	0,5407	0,5395	0,5383
0,27	0,5570	0,0000	0,5540 0 5994	0,5333	0.5000	0,5309	0,5297	0,5284	0,5272	0,5260
0,29	0,0240	0,5230	0,0224	0,5212 0,5093	0,5200	0,5188	0,5170	0,5164	0,5152	0,5140
0,30				0,4977		0,3070	0,5058	0,0047	0,5035	0,5023
0,31	0,4898	0,3000	0,4303	0,4864	0,4300	0,4904	0,4940	0,4932	0,4920	0,4909
0,32	0,1000	0,4007	0,10764	0,4753	0,4000	0,4042	0,4001	0,4019	0,4808	0,4797
0,33	0,4677	0,4667	0,4656	0,4645	0 4634	0.4694	0.4612	0,4710	0,4699	0,4588
0,34	L = 1	0,4560	0,4550	0,4539	0.4529	0,4024	0,4513	0,4003	0,4592	0,4581
0,35	0.4467	0 4457	0 4446	0.4436	0.4426	10 44 16	IN 44N6	IN 4205 I	0.4005	A 4) 7 E
0,36	0.4365	0 4355	0 4345	0,4335	0.4325	0,4315	0,4406	0,4393	0,4385	0,43/5
0,37	0.4266	0 4256	0 4246	0,4236	0.4227	0,4917	0,4303	0,4290	0,4285	0,4276
0,38	0.4169	0.4159	0.4150	0,4140	0.4130	0.4121	0.4111	0,4190	0,4100	0.4178
	•	, -, 50	1-,30	1 -, 30	,	1-,	1 , , , , ,	0,4102	0,4193	0,4003

Продолжение табл. 5

						·		ОООЛЖЕ	гние та	ОЛ. Э
D*	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,39	0.4074	0.4064	0.4055	0.4046	0.4000					0.000
0,40	0,4074	[0,4004] [0,2079	0,4055	0,4046	0,4036	0,4027	0,4018	0,4009	0,3999	0,3990
0,40	0,3800	0,0972	0,3963	0,0904	0,3945	0,3935	0,3926	0,3917	10,3908	0,3899
0,42	0,3690	0,3001	0,3873	0,3004	0,3855	0,3846	0,3837	0,3828	0,3819	10,3811
0,43	0,3002	0,3733	0,3784	0,3770	0,3/0/	0,3758	0,3750	0,3741	0,3732	0,3724
0,44	0,3713	10,3707 10.3699	0,3698	0,3090	0,3081	0,36/3	0,3664	0,3656	0,3648	0,3639
0,45	0,3031	10,302 <i>2</i> 10.3540	0,3014	0,3000	0,3597	0,3589	0,3581	0,3573	0,3564	0,3556
0,46	10,3040 10.3467	0,3040	0,3532	0,3024	0,3010	0,3507	0,3499	0,3491	0,3483	0,3475
0,47	0,3407	10,3381	0,0401	0,3443	0,3430	0,3428	0,3420	0,3412	0,3404	0,3396
0,48	0,0000	0,3301	0,3373	0,3303	0,3357	0,3350	0,3342	0,3334	0,3327	0,3319
0,49	10,3311	10,3304	0,3230	0,3209	0,3201	0,32/3	0,3266	0,3258	0,3251	0,3243
0,50	0,0200	0,0220	0,3221	0,3214	0,3200	0,3199	0,3192	0,3184	0,3177	0,3170
0,51	10,3102	0,0100	0,3148	0,3140	0,3133	0,3120	10,3119	0,3112	0,3105	0,3097
0,52	0,0000	10,3003	0,3076	10,3009 In anna	0,3002	10,3033	10,3048	0,3041	0,3034	0,3027
0,53	0,9020	0,0010	0,3000	0,2333	0,2992	0,2900	0,2979	0,2972	0,2965	0,3027
0,54	0,2884	0.2877	0,2938	0,2331	0,2324	0,2917	0,2911	0,2904	0,2897	0,2891
0,55	0,2001	0,2812	0,2071	0,2004	0,2000	0,2001	0,2044	0,2838	0,2831	0,2825
0,56	0.2754	0 2748	0,2000	0,2133	0,2190	0,2100	0,2700	0,2773	0,2767	0,2761
0,57	0.2692	0.2685	0.2679	0,2100	0,2123	0,2120	0,2710	0,2710	0,2704	0,2698
0,58	0.2630	0.2624	0,2618	0,2010	0,2007	0,2001	0,2000	0,2049	0,2642	0,2576
0,59	0.2570	0.2564	0.2559	0,2012	0.2547	0,2000	0,2094	0,2000	0,2582	0,2576
0,60	0.2512	0.2506	0,2500	0,2000	0,2041	0,2041	0,2000	0,2529	10,2523	0,2518 0,2460
0,61	0.2455	0.2449	0.2443	0,2138	0,2403	0,2400	0,2411	0,24/2	0,2400	0,2400
0,62	0.2399	0.2393	0.2388	0.2382	0.2377	0,2421	0,2421	0,2410	0,2410	[0,2404]
0 ,63	1U.Z044	IU.Zaas	10 2333	ロロンろとび	ロナソスソス	1019317	コロ りてしり	10 090 7	10 0001	la ssac
0,64	10,2291	10,2200	10.2280	IU.ZZ70	10 2270	10 ソンらち	10 9959	10 9954	10 00 AL	la ogaa-
0,65	IU.ZZ39	10,2204	10.2228	111 2223	111 ソソモス	10 9913	IN 990X	ነለ ዓሳለን	10.0100	10 0100
0,66	10.2100	10,2100	10.217 8 .	10.2173	10 2168	10 9163	JN 9158	ነበ ባ1 ቬን	10 0140	10.01.49
0,67	IU.Z150	10.2155	10.2128	10.2123	10 21 18	10 9113	าก จากฉ	10 9104	חממם מל	10.9004
0,68	TU.ZUOS	TU.ZU04	10.2079	מ 207 עו	10 9070	10 2065	10 9061	ነበ ኃስቪና	IN ONE L	0.0046
0,69	10.2042	1U.ZU37	1U.ZU32	RT 2028	10 2023	าก วกาม	311 963 <i>1</i>	ነለ ባለለሲ	to oppose	LUSANAN
0,70	10.1333	10.1991	IV. LYON	10.1902	111 1977	111 1477	III IGEX	10 1063	IN INTO	しっています
0,71	10.1900	10.1940	10.1941	10.1930	10 1932	10 1998	10 1993	in tata	10.1014	10.101A
0,72	พ.ษขอ	10.1901	10.1897	111 1892	10 1888	10 1884	IN 1870	IN 1975	10.1071	10.1000
0,73	10.1802	10.1858	10.1854	10.1849	10 1845	10 1841	10 1837	IN 1829	10 1000	10001
0,74	10.1020	10.1610	เบเสเเ	aa exaa	ta exas	10-1799	10 1705	10.1701	10 1707	10 1700
0,75	1U.1778	10.1774	1U.E77U	tu. E7bb	10 1762	10 1758	10 1754	10 1750	0 1710	0.1740
0,76	ŧv.⊥≀oo	10.17.04	IU. I ZOU	111. I 7 Z D	111-1722	111 17 18	10 17 14	10 1710	10 1700	[0.1700
0,77	เม. มิตรด	TU.1094	tu. Ingu	IU. Lb&7.	10 Ib83	IN 1679	10 1675	10.1671	10.1007	0.1000
0,78	10.1000	10.1000	10.1b52	IU. I b48	11) 1h44	10.1641	IN 1637	10 1633	10.1000	10.1000
0,79	IU. I bzz	IU. IDIO	IU. ID14	10 IbIE	10.1607	10 1603	IN 1600	IO 1506	10.1500	LOIFOO
0,80	เบ.บองอ	10. Lagi	1U. L578	10 15/4	10.1570	10.1567	10-1563	10 1560	IN TEEC	lairea
0,81	IU. I 549	JU. 1040	10.1542	10 1538	10 1535	10.1531	IN 1598	10.150a	10.1501	10 1517
0,82	10.1014	10. LƏ10	10.1507	10.1503	10 1500	10 1496	IN 1493	10 1/20	10 1 400	10.1400
0,83	10.14/9	10.1476	10.1472	10 T469	10 14bb	IO 1469	IN 1450	10 1455	0 1450	10.140
0,84	10.1440	111 1442	10 1439	111435	HI 1437	IN 1 <i>1</i> 794	10 1796	10 1490	10	1
0,85	IU.1413	10 (409	111 1400	101 1403	111 141101	IN LYUK	มก บรบร	JA 1966	10 100=	المحجما
0,86	IV. LOQU	10.1577	10 15/4	111-13/1	บบาเสกพ	111 1365	111 1361	IN 1950	10 10-5	10.10
0,87	トリススンサブ	10.1540	10.1345	10 1340	10 1.3.37	111 1334	111) 13(3(1)	10 1207	10 1001	LO 1001
0,88	IU. 1010	10 1516	101 1312	11113119	111 1.31115	111 1 311 4	111 12111	10.1007	10 1004	la cook
0,89	10,1288	0,1285	10,1282	0,1279	0,1276	0,1273	0,1271	0,1268	0.1265	0.1291 0.1262
		•	-	•	•	•	•	1	1 -,	1 -1

Продолжение табл. 5

							<i>F</i>			
D*	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
$\begin{array}{c} 0.91 \\ 0.92 \end{array}$	0,1122 0,1096 0,1072 0,1047 0,1023	0,1227 0,1199 0,1172 0,1145 0,1119 0,1094 0,1069 0,1045 0,1021	0,1225 0,1197 0,1169 0,1143 0,1117 0,1091 0,1067 0,1042 0,1019	0,1222 0,1194 0,1167 0,1140 0,1114 0,1089 0,1064 0,1040	0,1219 0,1191 0,1164 0,1138 0,1112 0,1086 0,1062 0,1038 0,1014	0,1216 0,1188 0,1161 0,1135 0,1109 0,1084 0,1059 0,1035	0,1213 0,1186 0,1159 0,1132 0,1107 0,1081 0,1057 0,1033 0,1009	0,1211 0,1183 0,1156 0,1130 0,1104 0,1079 0,1054 0,1030	0,1208 0,1180 0,1153 0,1127 0,1102 0,1076 0,1052 0,1028	0,1205 0,1178 0,1151 0,1125 0,1099 0 1074

^{*} В графе *D* приведены два первых знака десятичной части оптической плотности, а в головке — ее третий знак. На пересечении строк и столбцов приведены коэффициенты пропускания, соответствующие этим плотностям. Целая единица оптической плотности уменьшает коэффициент пропускания в 10 раз.

T аблица 6 Оптическая плотность $D(\lambda)$ светофильтров источников света типов B и C

		(Оптическая	плотность Д	(λ)	
Длина волны	I кат	егория	II кат	егория	III ka	гегория
λ, нч	В	С	В	С	В	С
380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580	0,448 0,394 0,359 0,338 0,329 0,336 0,358 0,396 0,476 0,512 0,555 0,611 0,670 0,716 0,716 0,741 0,755 0,771 0,795 0,833 0,862	0,551 0,488 0,444 0,419 0,409 0,420 0,453 0,505 0,566 0,618 0,668 0,728 0,806 0,889 0,952 0,986 1,004 1,025 1,057 1,099 1,136	0,328 0,274 0,239 0,218 0,209 0,216 0,238 0,276 0,319 0,356 0,392 0,435 0,491 0,550 0,596 0,621 0,635 0,651 0,675 0,713 0,742	0,471 0,408 0,364 0,339 0,329 0,340 0,373 0,425 0,486 0,538 0,588 0,648 0,726 0,809 0,872 0,906 0,924 0,945 0,945 0,977 1,019 1,066	0,228 0,174 0,139 0,118 0,109 0,116 0,138 0,176 0,219 0,256 0,292 0,335 0,391 0,450 0,496 0,521 0,535 0,551 0,575 0,613 0,642	0,351 0,288 0,244 0,219 0,209 0,253 0,305 0,366 0,418 0,468 0,528 0,606 0,689 0,752 0,786 0,804 0,825 0,857 0,899 0,946

Продолжение табл 6

			Оптическая	плотность 1	Ο (Λ)	۸)						
Длина волны λ, нм	І кат	егория	II кат	егория	III ка	гегория						
*** **********************************	В	С	В	С	В	С						
590 600	0,896	1,189	0,776	1,109	0,676	0,98						
610	0,927 0,949	1,236 1,266	0,807 0,829	1,156 1,186	0,707 0,729	1,03 1,06						
620	0,966	1,292	0,825	1,212	0,729	1,00						
630	0,982	1,312	0,862	1,232	0,762	1,11						
640	0,996	1,333	0,876	1,253	0,776	1,13						
650	1,008	1,352	0,888	1,272	0,788	1,15						
660 670	1,022	1,371	0,902	1,291	0,802	1,17						
680	1,039	1,396	0,919	1,316	0,819	1,19						
690	1,059 1,084	1,409 1,459	0, 9 39 0, 9 64	1,329 1,379	0,839 0,864	1,20 1,25						
700	1,109	1,439	0,989	1,379	0,889	1,29						
710	1,136	1,528	1,016	1,448	0,916	1,3						
720	1,162	1,570	1,042	1,490	0,942	1,3						
730	1,189	1,603	1,069	1,523	0,969	1,40						
740 750	1,215	1,528	1,095	1,558	0,995	1,43						
760 760	1,232	1,661	1,112	1,581	1,012	1,40						
770 770	1,246	1,681	1,126	1,601	1,026	1,48						
780	1,251 $1,252$	1,687 1,691	1,131 1,132	1,607 1,611	1,031 1,032	1,48 1,49						

Толщину компонентов фильтров рассчитывают методом наименьших квадратов, для чего следует составить три уравнения типа За или Зб

$$a_{11}l_1 + a_{12}l_2 + a_{13}l_3 = d_1,$$

$$a_{21}l_1 + a_{22}l_2 + a_{23}l_3 = d_2,$$

$$a_{31}l_1 + a_{32}l_2 + a_{33}l_3 = d_3,$$

где
$$a_{11} = \sum_{\lambda} [K_1(\lambda)]^2, \ a_{12} = a_{21} = \sum_{\lambda} K_1(\lambda)K_2(\lambda),$$

$$a_{13} = a_{31} = \sum_{\lambda} K_1(\lambda)K_3(\lambda), \ a_{22} = \sum_{\lambda} [K_2(\lambda)]^2,$$

$$a_{23} = a_{32} = \sum_{\lambda} K_2(\lambda)K_3(\lambda), \ a_{33} = \sum_{\lambda} [K_3(\lambda)]^2,$$

$$d_1 = \sum_{\lambda} K_1(\lambda)[D(\lambda) - K_4(\lambda)]$$

$$d_2 = \sum_{\lambda} K_2(\lambda)[D(\lambda) - K_4(\lambda)]$$

$$d_3 = \sum_{\lambda} K_3(\lambda)[D(\lambda) - K_4(\lambda)]$$

$$d_1 = \sum_{\lambda} K_1(\lambda)D(\lambda)$$

$$d_1 = \sum_{\lambda} K_1(\lambda)D(\lambda)$$

$$d_2 = \sum_{\lambda} K_2(\lambda)D(\lambda)$$

$$d_3 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_3 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_1 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_1 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_2 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_3 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_1 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_1 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_2 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

Форма таблицы для расчета коэффициентов по формуле 4 Таблица 2

Длина волны λ, нм	Κ ₁ (λ)	K2(X)	K3(1)	K1(1)2	K2(λ)2	K ₃ (λ) ²	$K_1(\lambda) \times K_2(\lambda)$	K ₂ (λ)× ×K ₃ (λ)	$K_1(\lambda) \times K_3(\lambda)$
380 390									
780 ∑ 380				a ₁₁	a ₂₂	a ₃₃	a ₁₂	a ₂₃	a ₁₃

Продолжение табл. 7

Длина волны А, нм	$K_1(\lambda)[D(\lambda)-K_1(\lambda)]$	$K_2(\lambda)[D(\lambda)-K_4(\lambda)]$	$K_3(\lambda)[D(\lambda)-K_4(\lambda)]$
380 390			li
780 £ 380	ď1	d ₂	\vec{a}_3

Толщины $l_1,\ l_2,\ l_3$ компонентов светофильтра находят из выражений:

$$\begin{aligned} l_1 &= \frac{1}{\Delta} \left[d_1(a_{22}a_{33} - a_{23}a_{32}) + d_2(a_{13}a_{32} - a_{12}a_{33}) + d_3(a_{12}a_{23} - a_{13}a_{22}) \right] \\ l_2 &= \frac{1}{\Delta} \left[d_1(a_{23}a_{31} - a_{21}a_{33}) + d_2(a_{11}a_{33} - a_{13}a_{31}) + d_3(a_{13}a_{21} - a_{11}a_{23}) \right] \\ l_3 &= \frac{1}{\Delta} \left[d_1(a_{21}a_{32} - a_{22}a_{31}) + d_2(a_{12}a_{31} - a_{11}a_{32}) + d_3(a_{11}a_{22} - a_{12}a_{21}) \right] \end{aligned} ,$$
 (5)
$$\Gamma \text{Re } \Delta = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}). \end{aligned}$$

Оптическую плотность $D_{\Phi}(\lambda)$ полученного светофильтра определяют по формуле

$$D_{\Phi}(\lambda) = K_1(\lambda) l_1 + K_2(\lambda) l_2 + K_3(\lambda) l_3 + K_4(\lambda) l_4 + 0.047.$$
 (6)

Для расчета координат цвета светофильтра оптическую плотность $D_{\Phi}(\lambda)$,

полученную по формуле (6), переводят в коэффициенты пропускания $au_{\Phi}(\lambda)$ по табл. 5.

Координаты цвета X_{Φ} , Y_{Φ} , Z_{Φ} полученного составного светофильтра при источнике света типа A рассчитывают по формулам:

$$X_{\Phi} = \sum_{\lambda} \Phi_{\lambda}^{A} \overline{x}(\lambda) \tau_{\Phi}(\lambda); \tag{7}$$

$$\tau_{\Phi} = Y_{\Phi} = \sum_{\lambda} \mathfrak{C}_{\lambda}^{A} \overline{y}(\lambda) \tau_{\Phi}(\lambda); \tag{8}$$

$$Z_{\phi} = \sum_{\lambda} \Phi_{\lambda}^{A} \overline{z}(\lambda) \tau_{\phi}(\lambda), \tag{9}$$

где произведения

$$\Phi_{\lambda}^{A} \overline{x(\lambda)}, \Phi_{\lambda}^{A} \overline{y(\lambda)}, \Phi_{\lambda}^{A} \overline{z(\lambda)}$$
 берутся из табл. 8.

Координаты цветности x_{Φ} , y_{Φ} вычисляют по формулам:

$$x_{\Phi} = \frac{X_{\Phi}}{X_{\Phi} + Y_{\Phi} + Z_{\Phi}} ; \tag{10}$$

$$y_{\Phi} = \frac{Y_{\Phi}}{X_{\Phi} + Y_{\Phi} + Z_{\Phi}} \ . \tag{11}$$

Координаты цветности x, y источника конкретизируются типом индекса источника, например $x^{\rm B}$, $y^{\rm B}$, $x^{\rm C}$, $y^{\rm C}$.

Таблица 8 Таблица для расчета координат цвета

	Исто	чник света	типа А	Источник света типа В		
Длина волны А, нм	$\overline{x} \cdot \Phi_{\lambda}^{A}$	<u>y</u> · Φ ^A _λ	$\overline{z} \cdot \Phi_{\lambda}^{A}$	$\overline{x} \cdot \Phi_{\lambda}^{B}$	y· Φ B	z·Φ ^B _λ
380	0,0010	0,0000	0,0048	0,0025	0,0000	0,0164
390	0,0046	0,0001	0,0219	0,0123	0,0003	0,0870
400	0,0193	0,0005	0,0916	0,0558	0,0014	0,2650
410	0,0688	0,0019	0,3281	0,2091	0,0057	0,9970
420	0,2666	0,0080	1,2811	0,8274	0,0248	3,9750
430	0,6479	0,0265	3,1626	1,9793	0,0810	9,6617
440	0,9263	0,0609	4,6469	2,6889	0,1768	13,4883
450	1,0320	0,1167	5,4391	2,7460	0,3105	14,4729
460	1,0207	0,2098	5,8584	2,4571	0,5050	14,1020
470	0,7817	0,3624	5,1445	1,7297	0,8018	11,3825
480	0,4242	0,6198	3,6207	0,8629	1,2609	7,3655
490	0,1604	1,0398	2,3266	0,2960	1,9190	4,2939
500	0,0269	1,7956	1,5132	0,0437	2,9133	2,4552
510	0,0572	3,0849	0,9674	0,0810	4,3669	1,3694
520	0,4247	4,7614	0,5271	0,5405	6,0602	0,6709
530	1,2116	6,3230	0,3084	1,4555	7,5959	0,3705
540	2,3142	7,5985	0,1625	2,6899	8,8322	0,1889
550	3,7329	8,5707	0,0749	4,1838	9,6060	0,0840
560	5,5086	9,2201	0,0357	5,8385	9,7722	0,0378

Продолжение табл. 8

	Источ	ник света	типа А	Источник света типа В		
Длина волны д, нм	$x \cdot \Phi_{\lambda}^{A}$	$\overline{y} \cdot \Phi_{\lambda}^{A}$	$\overline{z} \cdot \Phi^{A}_{\lambda}$	$x \cdot \Phi_{\lambda}^{B}$	$y \cdot \Phi_{\lambda}^{B}$	$\overline{z} \cdot \Phi \stackrel{\mathrm{B}}{\lambda}$
570	7,5710	9,4574	0,0209	7,4723	9,3341	0,0206
580	9,7157	9,2257	0,0170	8,8406	8,3947	0,0154
590	11.5841	8,5430	0,0130	9,7329	7,1777	0,0109
600	12,7103	7,5460	0,0096	9,9523	5,9086	0,0075
610	12,6768	6,3599	0,0044	9,4425	4,7373	0,0033
620	11,3577	5,0649	0,0020	8,1290	3,6251	0,0014
630	8,9999	3,7122	0,0000	6,2135	2,5629	0,0000
640	6,5487	2,5587	0,0000	4,3678	1,7066	0,0000
650	4,3447	l 1,6389	0,0000	2,8202	1,0638	0,0000
660	2,6234	0,9706	0,0000	1,6515	0.6110	0,0000
670	1,4539	0,5327	0,0000	0,8796	0,3223	0,0000
680	0,7966	0,2896	0,0000	0,4602	0,1673	0,0000
690	0.4065	0,1467	0,0000	0,2218	0,0801	0,0000
700	0,2067	0,0744	0,0000	0,1065	0.0384	0,0000
710	0,1108	0,0398	0,0000	0,0538	0,0193	0,0000
720	0,0556	0,0195	0,0000	0,0253	0,0089	0,0000
7 30	0,0280	0,0100	0,0000	0,0120	0,0043	0,0000
740	0,0144	0,0062	0,0000	0,0058	0,0025	0,0000
750	0,0063	0,0021	0,0000	0,0024	0,0008	0,0000
760	0,0032	0,0011	0,0000	0,0012	0,0004	0,0000
770	0,0011	0,0000	0,0000	0,0004	0,0000	0,0000
780	0,0000	0,0000		0.0000	0,0000	0,0000
Координата	109,8450	100,0000	35,5824	99,0915	100,0000	85,3094
цвета	(X^{A})	$(Y^{\mathbf{A}})$	$(Z^{\mathbf{A}})$	(X^{B})	(Y^B)	$(Z^{\mathbf{B}})$

Продолжение табл. 8

	Исто	чник света	типа С	Источник света типа D ₆₅		
Длина волны 2, нм	$\overline{x} \cdot \Phi_{\lambda}^{C}$	$y \cdot \Phi_{\lambda}^{C}$	$\overline{z} \cdot \Phi_{\lambda}^{C}$	$x \cdot \Phi_{\lambda}^{D_{65}}$	$y \cdot \Phi_{\lambda}^{D_{65}}$	z · Φ λ D65
380	0,0036	0,0000	0,0164	0,0066	0,0000	0,0307
390	0,0183	0,0004	0,0870	0,0217	0,0005	0,1038
400	0,0841	0,0021	0,3992	0,1120	0,0031	0,5320
410	0,3180	0,0087	1,5159	0,3766	0,0104	1,7958
420	1,2623	0,0378	6,0646	1,1840	0,0352	5,6878
430	2,9913	0,1225	14,6019	2,3292	0,0952	11,3679
440	3,9741	0,2613	19,9357	3,4574	0,2283	17,3426
450	3,9191	0,4432	20,6551	3,7223	0,4207	19,6199
460	3,3668	0,6920	19,3235	3,2416	0,6688	18,6070
470	2,2878	1,0605	15,0550	2,1246	0,9894	13,9998

Продолжение табл. 8

	Исто	чник света	типа С	Источник света типа D ₆₅		
Длина волны λ, нм	$x \cdot \Phi_{\lambda}^{C}$	y - Φ C λ	$\overline{z} \cdot \Phi_{\lambda}^{C}$	$\overline{x} \cdot \Phi_{\lambda}^{D_{65}}$	$y \cdot \Phi_{\lambda}^{D_{65}}$	$\overline{z} \cdot \Phi_{\lambda}^{D_{65}}$
480	1,1038	1,6129	9,4220	1,0485	1,5245	8,9165
490	0,3639	2,3591	5,2789	0,3294	2,1415	4,7895
500	0,0511	3,4077	2,8717	0,0507	3,3438	2,8158
510	0,0898	4,8412	1,5181	0,0948	5,1311	1,6138
520	0,5752	6,4491	0,7140	0,6278	7,0411	0,7755
530	1,5206	7,9357	0,3871	1,6867	8,7852	0,4301
540	2,7858	9,1470	0.1956	2,8689	9,4248	0,2005
550	4,2833	9,8343	0,0860	4,2652	9,7922	0,0856
560	5,8782	9,8387	0,0381	5,6257	9,4155	0,0369
570	7,3230	9,1476	0,0202	6,9448	8,6753	0,0191
580	8,4141	7,9897	0,0147	8,3066	7,8869	0,0154
590	8,9878	6,6283	0,0101	8,6143	6,3539	0,0092
600	8,9536	5,3157	0,0067	9,0463	5,3740	0,0068
610	8,3297	4,1788	0,0029	8,5008	4,2648	0,0025
620	7,0604	3,1485	0,0012	7,0906	3,1619	0,0017
630	5,3212	2,1948	0,0000	5,0638	2,0889	0,0000
640	3,6882	1,4411	0,0000	3,5475	1,3862	0,0000
650	2,3531	0,8876	0,0000	2,1462	0,8100	0,0000
660	1,3589	0,5028	0,0000	1,2515	0,4629	0,0000
670	0,7113	0,2606	0,0000	0,6807	0,2492	0,0000
680	0,3657	0,1329	0,0000	0,3468	0,1260	0,0000
690	0.1721	0,0621	0,0000	0,1497	0,0541	0,0000
700	0,0806	0,0290	0,0000	0,0772	0,0278	0,0000
710	0,0398	0,0143	0,0000	0,0408	0,0148	0,0000
720	0,0183	0,0064	0,0000	0,0169	0,0058	0,0000
730	0,0085	0,0030	0,0000	0,0093	0,0033	0,0000
740	0,0040	0,0017	0,0000	0,0050	0,0021	0,0000
750	0,0017	0,0006	0,0000	0,0018	0,0006	0,0000
760	0,0008	0,0003	0,0000	0,0009	0,0004	0,0000
770	0,0003	0,0000	0,0000	0,0006	0,0000	0,0000
780	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Координата	98,0699	100,0000	118,2216	95,0158	100,0000	108,80 62
цвета	(X ^c)	(Y ^c)	(Z ^c)	(X D ₆₅)	(Y D ₆₅)	(Z ^{D₆₅})

Значения отклонений координат цветности определяют по формулам:

 $\Delta x^{\rm B} = x_{\, \Phi}^{\, \rm B} - x^{\rm B}$ и $\Delta y = y_{\, \Phi}^{\, \, \rm B} - y^{\rm B} -$ для светофильтра источника света типа B; (12) $\Delta x^{\rm C} = x_{\, \Phi}^{\, \, \rm C} - x^{\rm C}$ и $\Delta y^{\rm C} = y_{\, \Phi}^{\, \, \rm C} - y_{\Phi} -$ для светофильтра источника света типа C.

^{3.} Введение поправки на толщины компонентов светофильтра

Если отклонения координат цветности $\Delta x^{\rm B}\Delta y^{\rm B}$ или $\Delta x^{\rm C}\Delta y^{\rm C}$, определенные по формулам (12), превышают установленный допуск (табл. 3), толщины компоненгов l_1 , l_2 , l_3 светофильтров должны быть изменены на значения Δl_1 , Δl_2 , Δl_3 .

Для этого необходимо:

1) исходную плотность $D(\lambda)$, использованную при расчете толщин компонентов светофильтра, изменить на постоянное значение $\Delta D^{\rm B}$ или $\Delta D^{\rm C}$ в соответствии со следующими формулами:

для светофильтров I категории:

для светофильтра источника света типа В:

$$\Delta D^{\rm B} = \frac{y_{\Phi}^{\rm B} - x_{\Phi}^{\rm B} - 0.004}{0.070} \; ;$$

для светофильтра источника света типа С:

$$\Delta D^{c} = \frac{y_{\Phi}^{C} - x_{\Phi}^{C} - 0{,}006}{0{,}072} ;$$

для светофильтров II категории:

для светофильтра источника света типа В:

$$\Delta D^{\rm B} = \frac{y_{\Phi}^{\rm B} - 0.361}{0.044} \; ;$$

для светофильтра источника света типа С:

$$\Delta D^{\rm c} = \frac{y_{\Phi}^{\rm C} - 0.325}{0.052}$$
;

для светофильтров III категории:

для светофильтра источника света типа В:

$$\Delta D^{\rm B} = \frac{y_{\,\Phi}^{\,\rm B} - 0.366}{0.044}$$
;

для светофильтра источника света типа С:

$$\Delta D^{c} = \frac{y_{\Phi}^{C} - 0.330}{0.052}$$
.

2) Определить изменения толщин Δl_1 , Δl_2 , Δl_3 компонентов светофильтра из выражений (5), заменяя в них l_1 , l_2 , l_3 на Δl_1 , Δl_2 , Δl_3 , а значения d_1 , d_2 , d_3 на Δd_1 , Δd_2 , Δd_3 , согласно следующим выражениям:

для светофильтра источника света типа В:

$$\Delta d_1 = \Delta D^{B} \sum_{\lambda} K_1(\lambda),$$

$$\Delta d_2 = \Delta D^{B} \sum_{\lambda} K_2(\lambda),$$

$$\Delta d_3 = \Delta D^{B} \sum_{\lambda} K_3(\lambda);$$

для светофильтра источника света типа С:

$$\Delta d_1 = \Delta D^{c} \sum_{\lambda} K_1(\lambda),$$

$$\Delta d_2 = \Delta D^{c} \sum_{\lambda} K_2(\lambda),$$

$$\Delta d_3 = \Delta D^{\mathsf{C}} \sum_{\lambda} K_3(\lambda).$$

3) Определить толщины l'_1 , l'_2 , l'_3 компонентов нового светофильтра, а также его координаты цветности $(x_{\Phi}^B)'$, $(y_{\Phi}^B)'$ или $(x_{\Phi}^C)'$, $(y_{\Phi}^C)'$ и коэффициент пропускания $(x_{\Phi}^B)'$ или $(x_{\Phi}^C)'$ по формулам:

$$l'_1 = l_1 + \Delta l_1,$$

 $l'_2 = l_2 + \Delta l_2,$
 $l'_3 = l_3 + \Delta l_3;$

для светофильтра источника света типа В:

$$(x_{\Phi}^{B})' = x_{\Phi}^{B} + 0.026\Delta D^{B},$$

 $(y_{\Phi}^{B})' = y_{\Phi}^{B} - 0.044\Delta D^{B},$
 $(\tau_{\Phi}^{B})' = \tau_{\Phi}^{B} \cdot T^{\alpha};$

для светофильтра источника света типа С:

$$(x_{\Phi}^{C})' = x_{\Phi}^{C} + 0.020\Delta D^{c},$$

$$(y_{\Phi}^{C})' = y_{\Phi}^{C} - 0.052\Delta D^{c},$$

$$(\tau_{\Phi}^{C})' = \tau_{\Phi}^{C} \cdot T^{a},$$

$$-\lg T = |\Delta D^{g}|;$$

$$-\lg T = |\Delta D^{c}|.$$

где

Множитель T следует определить из табл. 5. Показатель степени α при T равен ± 1 и совпадает по знаку с $D^{\rm B}$ или с $D^{\rm C}$.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ИСПОЛНИТЕЛИ

- Э. В. Кувалдин, канд. техн. наук; Е. А. Иозеп, канд. техн. наук; В. И. Беликов; Л. В. Демкина; О. А. Цаплина; Н. С. Шандин
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.06.89 № 2207
- 3. Срок проверки 1993 г.
- 4. Стандарт соответствует рекомендации РССЭВ 2265—69, кроме п. 3.2
- 5. Взамен ГОСТ 7721—76
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 8 326—78	33
ГОСТ 8711—78	23
ГОСТ 9411—81	243, приложение 2

Редактор В М Лысенкина Технический редактор Э В Митяи Корректор Л В Сницарчук

Сдано в наб 21 07 89 Подп в печ 23 10 89 1 25 усл п л 1,25 усл кр отт 1,29 уч изд л Тир 5000 Цена 5 к