межгосударственный стандарт

СПЛАВЫ МАГНИЕВЫЕ

Методы определения марганца

ГОСТ 3240.2—76

Magnesium alloys.

Methods for determination of manganese

МКС 77.120.20 ОКСТУ 1709

Дата введения 01.01.78

Настоящий стандарт устанавливает титриметрический метод определения марганца (при массовой доле марганца от 0.2 до 3 %), фотометрический метод определения марганца (при массовой доле марганца от 0.01 до 0.2 %) и атомно-абсорбционный метод определения марганца (при массовой доле марганца от 0.01 до 3 %).

(Измененная редакция, Изм. № 1).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 3240.0.

2. ТИТРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ МАРГАНЦА

2.1. Сущность метода

Метод основан на окислении марганца надсернокислым аммонием в присутствии катализатора до семивалентного состояния и титровании раствором арсенитно-нитритной смеси.

(Измененная редакция, Изм. № 1).

2.2. Аппаратура, реактивы и растворы

Кислота серная по ГОСТ 4204 и разбавленная 1:1, 1:2 и 1:5.

Кислота азотная по ГОСТ 4461.

Кислота ортофосфорная по ГОСТ 6552.

Смесь кислот; готовят следующим образом: к $600 \, \text{см}^3$ серной кислоты, разбавленной 1:5, прибавляют 250 см³ азотной кислоты, $125 \, \text{сm}^3$ ортофосфорной кислоты и тщательно перемешивают.

Серебро азотнокислое по ГОСТ 1277, 0,01 M раствор; готовят следующим образом: 1,7 г азотнокислого серебра растворяют в 1000 см³ воды и перемешивают.

Натрий азотистокислый по ГОСТ 4197.

Аммоний надсернокислый по ГОСТ 20478, 10 и 25 %-ный раствор.

Натрий хлористый по ГОСТ 4233, 1 %-ный раствор.

Натрия гидроокись по ГОСТ 4328, 5 %-ный раствор.

Калий марганцовокислый по ГОСТ 20490, 0,05 М раствор.

Натрий углекислый кислый по ГОСТ 4201.

Смесь арсенитно-нитритная; титрованный раствор; готовят следующим образом: 1,3 г мышьяковистого ангидрида растворяют в 20 см³ раствора гидроокиси натрия, разбавляют водой до 100—150 см³ и нейтрализуют по лакмусовой бумажке серной кислотой, разбавленной 1:1, вводя 0,5—1 см³ ее в избыток, который нейтрализуют кислым углекислым натрием по лакмусовой бумаге, после чего к раствору добавляют 0,85 г азотистокислого натрия, разбавляют водой до 1000 см³ и перемешивают.

Раствор арсенитно-нитритной смеси хранят в темных бутылях, закрытых резиновой пробкой с хлоркальциевой трубкой.

Издание официальное

Перепечатка воспрещена

Титр арсенитно-нитритной смеси устанавливают по 0,05 М раствору марганцовокислого калия. В колбу вместимостью $250 \, \mathrm{cm}^3$ наливают $30 \, \mathrm{cm}^3$ смеси кислот, прибавляют $50 \, \mathrm{cm}^3$ воды, $2 \, \mathrm{cm}^3$ раствора азотнокислого серебра и $10 \, \mathrm{cm}^3$ $10 \, \%$ -ного раствора надсернокислого аммония. Смесь кипятят $1 \, \mathrm{muh}$. После охлаждения из бюретки приливают $20,0-25,0 \, \mathrm{cm}^3$ 0,05 М раствора марганцовокислого калия, $5 \, \mathrm{cm}^3$ $1 \, \%$ -ного раствора хлористого натрия и $10 \, \mathrm{cm}^3$ серной кислоты, разбавленной 1:2, титруют раствором арсенитно-нитритной смеси до получения бледно-розового окрашивания. Перед окончанием титрования арсенитно-нитритную смесь добавляют по каплям с интервалом между ними $5-10 \, \mathrm{c}$.

2.3. Проведение анализа

Навеску сплава берут в зависимости от массовой доли марганца в количестве, приведенном в табл. 1.

Навеску помещают в коническую колбу вместимостью 250 см³, приливают 10 см³ воды и небольшими порциями 30 см³ смеси кислот. После прекращения бурной реакции внутренние стенки колбы обмывают небольшим количеством воды и раствор нагревают на плите не выше 80 °C до полного растворения сплава. Обмывают стенки колбы

	таолица т	
Массовая доля марганца, %	Масса навески сплава, г	
До 0,5 Св. 0,5	1 0,25	
	1	

 $50~{\rm cm}^3~{\rm воды}$, вводят $10~{\rm cm}^3~{\rm раствора}$ азотнокислого серебра, $15~{\rm cm}^3~{\rm надсернокислого}$ аммония, нагревают до кипения и кипятят в течение $1-2~{\rm muh}$. Колбу с раствором снимают с плиты, осторожным вращением удаляют оставшийся на стенках колбы кислород, охлаждают до $15-20~{\rm ^{\circ}C}$, прибавляют $10~{\rm cm}^3~{\rm pactвора}$ хлористого натрия, $10~{\rm cm}^3~{\rm cephoй}$ кислоты, разбавленной 1:1, и титруют раствором арсенитно-нитритной смеси до исчезновения розовой окраски.

2.4. Обработка результатов

2.4.1. Массовую долю марганца (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot T \cdot 100}{m},$$

где V— объем арсенитно-нитритного раствора, израсходованный на титрование, см 3 ;

T — титр мышьяковистого ангидрида, выраженный в граммах марганца на миллилитр;

т — масса навески сплава, г.

2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 2.

Таблица 2

Массовая доля марганца, %	Абсолютное допускае- мое расхождение, %	
От 0,2 до 0,5	0,015	
Св. 0,5 » 1,0	0,05	
» 1,0 » 3,0	0,1	

2.5. Контроль точности измерений

Контроль точности измерений массовой доли марганца от 0,2 до 3,0 % проводят с использованием Государственного стандартного образца ГСО 3363.

Кроме того, используют государственные стандартные образцы магниевых сплавов, вновь выпущенные, а также отраслевые стандартные образцы

и стандартные образцы предприятия магниевых сплавов, выпущенные в соответствии с ГОСТ 8.315. Контроль точности измерений проводят в соответствии с ГОСТ 25086.

Допускается проводить контроль точности измерений массовой доли марганца, используя метод добавок.

(Измененная редакция, Изм. № 1).

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ МАРГАНЦА

3.1. Сущность метода

Метод основан на окислении двухвалентного марганца до семивалентного йоднокислым калием с измерением оптической плотности полученного перманганат-иона при $\lambda_{max} = 545$ нм.

3.2. Аппаратура, реактивы и растворы

Спектрофотометр типа СФ4А или фотоэлектроколориметр типов ФЭК-56, ФЭК-60. Кислота серная по ГОСТ 4204, разбавленная 1:3.

С. 3 ГОСТ 3240.2-76

Кислота азотная по ГОСТ 4461, не содержащая окислов азота.

Для освобождения от окислов азота кислоту кипятят или пропускают через нее ток двуокиси углерода.

Калий йоднокислый.

Вода дистиллированная, не содержащая восстановительных веществ; готовят следующим образом: 1000 см³ дистиллированной воды, подкисленной 10 см³ серной кислоты, доводят до кипения, добавляют несколько кристалликов йоднокислого калия и кипятят в течение 10 мин.

Калий марганцовокислый по ГОСТ 20490.

Натрий сернистокислый по ГОСТ 195.

Водорода перекись по ГОСТ 10929, 30 %-ный раствор.

Натрий азотистокислый по ГОСТ 4197, 2 %-ный раствор.

Стандартные растворы марганца.

Раствор А; готовят следующим образом: в высоком стакане вместимостью 400 см³, содержащем 200 см³ воды, растворяют 2,8770 г марганцовокислого калия, добавляют 40 см³ серной кислоты и восстанавливают марганцовокислый калий с помощью нескольких кристаллов сернистокислого натрия или перекиси водорода. Раствор кипятят до удаления избытка двуокиси серы или перекиси водорода, охлаждают, переносят в мерную колбу вместимостью 1000 см³, разбавляют водой до метки и перемешивают.

1 см³ раствора А содержит 1 мг марганца.

Раствор Б; готовят следующим образом: 100 см³ раствора А отбирают в мерную колбу вместимостью 1000 см³, разбавляют до метки водой и перемешивают.

1 см³ раствора Б содержит 0,1 мг марганца.

3.3. Проведение анализа

3.3.1. Навеску сплава берут в зависимости от массовой доли марганца в количестве, приведенном в табл. 3.

Таблица 3

		Количество серной кислоты, см ³	
Массовая доля марганца, % Масса навески сплава, г	для растворения	для контрольного опыта	
От 0,01 до 0,05 Св. 0,05 » 0,2	1 0,5	25 20	5 0

Навеску сплава помещают в колбу вместимостью 250 см³, добавляют 10 см³ воды, а затем небольшими порциями серную кислоту, количество которой указано в табл. 3, и колбу накрывают часовым стеклом. Как только растворение закончится, добавляют 25 см³ раствора азотной кислоты и кипятят несколько минут. Полученные растворы разбавляют водой до 60 см³, доводят до кипения и добавляют 0,5 г йоднокислого калия, затем снова кипятят 5 мин и оставляют растворы в горячем состоянии (около 98 °C) на 15 мин. После охлаждения растворы переливают в мерную колбу вместимостью 100 см³ и разбавляют до метки водой, не содержащей восстановителей. Одновременно проводят контрольный опыт.

В платиновую чашку помещают 25 см³ азотной кислоты и серную кислоту в соответствии с табл. 3 и выпаривают содержимое чашки досуха. Затем растворяют осадок небольшим количеством горячей воды, переливают раствор в колбу вместимостью 250 см³, разбавляют водой до 40 см³, добавляют 20 см³ серной кислоты и далее анализ ведут, как указано выше при анализе пробы.

Оптическую плотность испытуемого раствора (E_1) и раствора контрольного опыта (E_2) измеряют в соответствующих кюветах при 545 нм, применяя в качестве сравнения воду. Затем в испытуемый раствор и раствор контрольного опыта вводят по каплям раствор азотистокислого натрия до обесцвечивания и повторяют измерения оптической плотности испытуемого раствора (E_3) и раствора контрольного опыта (E_4) . Раствором сравнения служит вода.

Оптическую плотность испытуемого раствора (ΔE) вычисляют по формуле

$$\Delta E = (E_1 - E_2) - (E_3 - E_4).$$

3.3.2. Построение градуировочного графика

3.3.2.1. Приготовление компенсирующего раствора.

В платиновую чашку помещают 20 см³ азотной кислоты и выпаривают досуха. Чашку обмывают небольшим количеством горячей воды, переливают раствор в мерную колбу вместимостью 250 см³, разбавляют до 40 см³ водой и добавляют 15 см³ серной кислоты и 5 см³ азотной кислоты.

В шесть мерных колб вместимостью 250 см³ вводят 1,0; 2,0; 5,0; 10,0; 15,0 и 20,0 см³ раствора Б, что соответствует 0,0001; 0,0002; 0,0005; 0,0010; 0,0015 и 0,0020 г марганца и разбавляют содержимое колб водой до 40 см³, затем добавляют по 15 см³ серной кислоты, по 25 см³ азотной кислоты и далее анализ ведут, как указано в п. 3.3, используя в качестве контрольного опыта компенсирующий раствор.

По найденным значениям оптической плотности строят градуировочный график.

3.1—3.3. (Измененная редакция, Изм. № 1).

3.4. Обработка результатов

3.4.1. Массовую долю марганца (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m \cdot 100}{m_{\rm l}},$$

где m — количество марганца, найденное по градуировочному графику, г;

 m_1 — масса навески сплава, г.

3.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 4.

3.1—3.4. (Измененная редакция, Изм. № 1).

3.5. Контроль точности измерений

Контроль точности измерений массовой доли марганца от 0,01 до 0,2% проводят с использованием Государственного стандартного образца ГСО 3363.

Кроме того, используют государственные стандартные образцы магниевых сплавов, вновь выпу-

	Таблица 4
Массовая доля марганца, %	Абсолютное допускае- мое расхождение, %
От 0,01 до 0,03	0,003
Св. 0,03 » 0,05	0,005
» 0,05 » 0,10	0,01
» 0,10 » 0,20	0,03

щенные, а также отраслевые стандартные образцы и стандартные образцы предприятия магниевых сплавов, выпущенные в соответствии с ГОСТ 8.315. Контроль точности измерений проводят в соответствии с ГОСТ 25086.

Допускается проводить контроль точности измерений массовой доли марганца, используя метод добавок.

(Введен дополнительно, Изм. № 1).

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ МАРГАНЦА

4.1. Сущность метода

Метод основан на растворении пробы в соляной кислоте в присутствии азотной кислоты и последующем измерении атомной абсорбции марганца при длине волны 279,5 нм в пламени ацетилен — воздух.

4.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр со всеми принадлежностями.

Ацетилен в баллонах по ГОСТ 5457.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Марганец металлический по ГОСТ 6008 в виде стружки.

Стандартные растворы марганца

Раствор А: 1 г марганца растворяют при нагревании в 50 см³ раствора азотной кислоты. Раствор кипятят до удаления окислов, охлаждают, переводят в мерную колбу вместимостью 1 дм³, доливают водой до метки и перемешивают.

1 см³ раствора А содержит 1 мг марганца.

Раствор Б: 50 см³ раствора А переносят в мерную колбу вместимостью 500 см³, разбавляют водой до метки и перемешивают.

C. 5 FOCT 3240.2-76

1 см³ раствора Б содержит 0,1 мг марганца.

Магний металлический в чушках по ГОСТ 804 в виде стружки с содержанием марганца не более 0,0005 %.

Раствор магния 50 г/дм^3 : $50 \text{ г магния осторожно растворяют в }800 см³ соляной кислоты, разбавленной 1:1. Раствор охлаждают, переносят в мерную колбу вместимостью <math>1 \text{ дм}^3$, доливают водой до метки и перемешивают.

4.3. Проведение анализа

4.3.1. Навеску сплава массой 1 г помещают в стакан вместимостью 300 см³, растворяют в 30 см³ соляной кислоты, добавляют 5—10 капель азотной кислоты и кипятят до удаления окислов азота. Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают водой до метки, перемешивают и проводят разбавления в соответствии с табл. 5.

Таблица 5

Массовая доля марганца, % Разбавление раствора, см³/см³

От 0,01 до 0,16 Св. 0,16 » 1,4 10/100 3 1,4 3 3,0 5/100

Параллельно пробе проводят анализ контрольного опыта.

Измеряют атомную абсорбцию марганца в растворе пробы, растворе контрольного опыта и растворах для построения градуировочного графика на атомно-абсорбционном спектрофотометре относительно воды при длине волны 279,5 нм в пламени ацетилен—воздух.

Концентрацию марганца в пробе и растворе контрольного опыта определяют по градуировочному графику.

4.3.2. Для построения градуировочного графика при массовой доле марганца от 0,01 до 0,16 % в серию мерных колб вместимостью 100 см³ вводят по 20 см³ раствора магния, 0; 1,0; 2,0; 4,0; 6,0; 8,0; 10,0; 12,0; 14,0 и 16,0 см³ раствора Б, что соответствует 0; 0,1; 0,2; 0,4; 0,6; 0,8; 1,0; 1,2; 1,4 и 1,6 мг марганца. При массовой доле марганца от 0,16 до 1,4 % в серию мерных колб вместимостью 100 см³ вводят 2 см³ раствора магния 0; 1,6; 2,0; 4,0; 6,0; 8,0; 10,0; 12,0 и 14,0 см³ раствора Б, что соответствует 0; 0,16; 0,20; 0,40; 0,60; 0,80; 1,00; 1,20 и 1,40 мг марганца. При массовой доле марганца от 1,4 до 3,0 % в серию мерных колб вместимостью 100 см³ вводят по 1 см³ раствора магния, 0; 7,0; 8,0; 10,0; 12,0; 14,0 и 16,0 см³ раствора Б, что соответствует 0; 0,70; 0,80; 1,00; 1,20; 1,40 и 1,60 мг марганца. Растворы для градуирования доливают водой до метки, перемешивают и измеряют атомную абсорбцию марганца согласно п. 4.3.1.

Из полученных значений атомной абсорбции растворов, содержащих стандартный раствор, вычитают значение атомной абсорбции раствора, не содержащего стандартного раствора, и по полученным значениям атомной абсорбции и соответствующим им содержаниям марганца строят градуировочный график.

4.4. Обработка результатов

4.4.1. Массовую долю марганца (X) в процентах вычисляют по формуле

$$X=\frac{\left(m_1-m_2\right)\cdot 100}{m},$$

где m_1 — масса марганца в растворе пробы, найденная по градуировочному графику, г;

 m_2 — масса марганца в растворе контрольного опыта, найденная по градуировочному графику, г; m — масса навески пробы, взятая для спектрофотометрирования, г.

4.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 6.

Таблица 6

Массовая доля марганца, %	Абсолютное допускае- мое расхождение, %		Абсолютное допускае- мое расхождение, %
От 0,01 до 0,03	0,001	Св. 0,2 до 0,5	0,012
Св. 0,03 » 0,08	0,002	» 0,5 » 1,2	0,03
» 0,08 » 0,20	0,005	» 1,2 » 3,0	0,07

4.1—4.4. (Измененная редакция, Изм. № 1).

4.5. Контроль точности измерений

Контроль точности измерений массовой доли марганца по п. 2.5.

(Введен дополнительно, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством авиационной промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 28.12.76 № 2889
- 3. ВЗАМЕН ГОСТ 3240—56 в части разд. V
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта,	Обозначение НТД,	Номер пункта,
	подпункта	на который дана ссылка	подпункта
FOCT 8.315—97 FOCT 195—77 FOCT 804—93 FOCT 1277—75 FOCT 3118—77 FOCT 3240.0—76 FOCT 4197—74 FOCT 4201—79 FOCT 4204—77 FOCT 4233—77	2.5, 3.5	ГОСТ 4328—77	2.2
	3.2	ГОСТ 4461—77	2.2, 3.2, 4.2
	4.2	ГОСТ 5457—75	4.2
	2.2	ГОСТ 6008—90	4.2
	4.2	ГОСТ 6552—80	2.2
	1.1	ГОСТ 10929—76	3.2
	2.2, 3.2	ГОСТ 20478—75	2.2
	2.2	ГОСТ 20490—75	2.2, 3.2
	2.2, 3.2	ГОСТ 25086—87	2.5, 3.5

- 5. Ограничение срока действия снято по протоколу № 2—92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- 6. ИЗДАНИЕ с Изменением № 1, утвержденным в июне 1987 г. (ИУС 11—87)