

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

ПЛАСТМАССЫ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК В ИНТЕРВАЛЕ ТЕМПЕРАТУР ОТ МИНУС 100 до плюс 400°С

ΓΟCT 23630.1-79 - ΓΟCT 23630.3-79

Издание официальное

ПЛАСТМАССЫ

Метод определения удельной теплоемкости

Plastics Method for the determination of thermal capacity

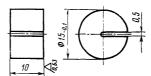
ГОСТ 23630.1—79

Постановлением Государственного комитета СССР по стандартам от 16 мая 1979 г. № 1735 срок введения установлен

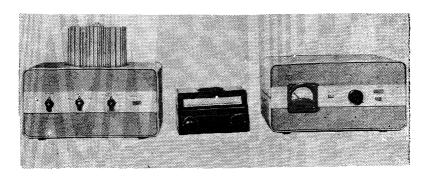
с 01.07. 1981 г. до 01.07. 1986 г.

Настоящий стандарт распространяется на пластмассы, для которых произведение удельной теплоемкости на плотность имеет значение не менее 1·10⁶ Дж/м³К, и устанавливает метод определения удельной теплоемкости в интервале температур от минус 100 до плюс 400°С (от 173 до 673 К).

Стандарт не распространяется на пластмассы, размягча: щиеся или подвергающиеся деструкции в пределах температур измерения.


Сущность метода состоит в измерении теплового потока, поглощаемого образцом в процессе монотонного режима нагрева динамического калориметра, характеризуемого временем запаздывания температуры на тепломере с известной эффективной тепловой проводимостью.

1. ОТБОР ПРОБ


- 1.1. Отбор проб, режим и способ изготовления образцов должны быть указаны в нормативно-технической документации на пластмассу.
- 1.2. Образец для испытания (черт. 1) должен быть в форме диска диаметром 15 мм, высотой 10 мм с прорезью 0,5 мм в диаметральной плоскости для компенсации температурного расширения.
 - 1.3. Для испытания берут не менее трех образцов.

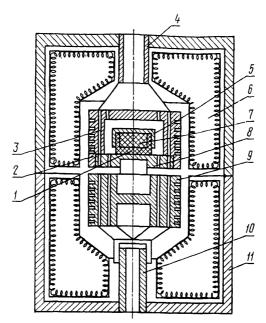
Издание официальное

Перепечатка воспрещена

Черт. 1

Черт. 2

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ


2.1. Прибор ИТ-С-400 (черт. 2), обеспечивающий измерение теплоемкости с погрешностью не более 10%, состоящий из блока измерительного, основой которого является С—калориметр (черт. 3), блока питания и регулирования, обеспечивающего монотонный режим нагрева со средней скоростью 0,1°С/мин и автоматическое регулирование температуры адиабатной оболочки.

Образец диаметром $15\pm0,1$ мм, высотой $10\pm0,3$ мм из меди марки M_1 по ГОСТ 859-78 или нержавеющей стали марки 12X18H9T или 12X1810T по ГОСТ 5632-72 для градуировки прибора (см. обязательное приложение 1).

Меры теплоемкости образцовые из корунда для поверки прибора (см. обязательное приложение 2).

Ампула для образца из меди марки M₁ по ГОСТ 859—78 (СТ СЭВ 226—75).

Гальванометр типа М 195/1.

1 — тепломер с ампулой;
2 — адиабатная оболочка;
3 — термопара (4 шт.);
4 — входной патрубок;
5 — крышка;
6 — теплозащитная оболочка;
7 — образец;
8 — основание;
9 — нагревательный блок;
10 — выходной патрубок;
11 — корпус

Черт. 3

Сосуд Дьюара типа АСД-16 по ГОСТ 5.837—71.

Секундомер по ГОСТ 5072—79.

Жидкость кремнийорганическая марки ПФМС-4 по ГОСТ 15866—70.

Бензин по ГОСТ 443-76.

Спирт этилювый ректификованный технический по ГОСТ 18300—72.

Азот жидкий по ГОСТ 9293-74.

2.2. Градуировку и поверку прибора производят не реже одного раза в три месяца в соответствии с обязательными приложениями 1, 2.

3. ПОДГОТОВКА К ИСПЫТАНИЮ

- 3.1. Образец взвешивают с погрешностью не более 0,001 г.
- 3.2. Контактные поверхности образца, ампулы и крышки протирают бензином (спиртом), затем на них наносят тонкий слой

кремнийорганической жидкости марки ПФМС-4, если в нормативно-технической документации на пластмассу нет иных указаний.

3.3. Испытуемый образец устанавливают в ампулу и закрывают ее крышкой (см. черт. 3).

Ампулу с образцом устанавливают в прибор и закрывают калориметр.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- 4.1. Испытание проводят в интервале температур от минус 100 до плюс 400°С, если в нормативно-технической документации на пластмассу нет иных указаний.
- 4.2. Испытание при отрицательных температурах начинают охлаждением жидким азотом до температуры минус 150°С металлического ядра калориметра, состоящего из нагревательного блока, основания, тепломера с ампулой и крышкой, адиабатной оболочки (см. черт. 3). Жидкий азот из сосуда Дьюара заливают в бачок, устанавливаемый на верхнюю половину калориметра, который далее через патрубок попадает в каналы адиабатной оболочки, основания и нагревательного блока и удаляется через выходной патрубок.

После достижения металлическим ядром температуры минус

150°С бачок снимают и включают нагрев.

4.3. Испытание от комнатных температур начинают включе-

нием нагрева сразу же после подготовки по разд. 3.

4.4. При нагреве через каждые 25°С (температура основания) измеряют время запаздывания температуры ампулы с образцом по отношению к температуре основания, для чего при достижении температуры испытания секундомер включают, а когда температура ампулы с образцом достигнет того же самого значения, секундомер отключают.

4.5. После окончания испытания извлекают ампулу с образцом

и прибор охлаждают.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Удельную теплоемкость (C_p) в Дж/кг-K для каждой температуры испытания вычисляют по формуле

$$C_p = \frac{K_T}{m} (\tau_T - \overline{\tau}_T),$$

где au_T — время запаздывания температуры ампулы с образцом по отношению к температуре основания, с;

тт — постоянная прибора, определяемая при градуировке (см. обязательное приложение 1), с;

 $K_{\rm T}$ — постоянная прибора, определяемая при градуировке (см. обязательное приложение 1). Вт/К:

m — масса образца, кг.

Пример лабораторной записи указан в рекомендуемом приложении 4.

- 5.2. За результат испытания принимают среднее арифметическое значение удельной теплоемкости не менее чем трех образцов, допускаемое расхождение между которыми должно быть указано в нормативно-технической документации на пластмассу.
- 5.3. Результаты испытаний записывают в протокол, который должен содержать следующие данные:

наименование и марку материала;

способ и режим изготовления образцов;

значение удельной теплоемкости при соответствующих температурах испытания в измеренном интервале температур;

дату испытания;

обозначение настоящего стандарта.

ПРИЛОЖЕНИЕ 1 Обязательное

ГРАДУИРОВКА ПРИБОРА

1. При градуировке определяют постоянные прибора:

Кт — эффективную тепловую проводимость тепломера, Вт/К;

 au_{T}^{-} — время запаздывания температуры пустой ампулы по отношению в температуре основания, с.

2. В соответствии с настоящим стандартом проводят не менее пяти испытаний с пустой ампулой и определяют постоянную прибора τ_{τ} в секундах, как среднее арифметическое времени запаздывания температуры пустой ампулы по отношению к температуре основания.

3. В соответствии с настоящим стандартом проводят не менее пяти испытаний с ампулой с медным или стальным образцом и вычисляют значение пос-

тоянной прибора ($K_{\rm T}$) в Вт/К по формуле

$$K_{\mathrm{T}} = \frac{C_{\mathrm{o}6\mathrm{D}}}{\overline{\tau}_{\mathrm{T}} - \overline{\tau}_{\mathrm{T}}^{\circ}} ,$$

где C_{06p} — полная теплоемкость медного или стального образца, равная произведению удельной теплоемкости меди или стального образца на его массу, Дж/К (см. приложение 3);

 $\overline{\tau}_{T}$ — время запаздывания температуры ампулы с медным или стальным образцом по отношению к температуре основания, с.

За результат испытания принимают среднее арифметическое значений K_{π} не менее чем из пяти определений.

ПОВЕРКА ПРИБОРА

1. При поверке прибора при температурах минус 100, 0, плюс 100, 200, 300 и 400°С определяют предел допускаемого значения погрешности, который не должен быть более 10% для образцовой меры из корунда (см. приложение 3).

2. Предел допускаемой погрешности (Δ) в процентах вычисляют по форму-

$$\Delta = \Delta_c \pm \mathring{\Delta}$$
,

где Δ_c — систематическая составляющая погрешности, %;

 Δ — случайная составляющая погрешности, %.

3. Систематическую составляющую погрешности (Δ_c) в процентах вычисляют по формуле

$$\Delta_{c} = \frac{\overline{C} - C_{co}}{C_{co}} \cdot 100,$$

где \overline{C} — среднее значение удельной теплоемкости образцовой меры, Дж/кг.К; $C_{\rm co}$ — удельная теплоемкость образцовой меры, Дж/кг.К (см. справочное приложение 3).

4. Среднее значение удельной теплоемкости (С), Дж/кг.К вычисляют как среднее арифметическое не менее пяти определений по формуле

$$\overline{C} = \frac{\sum_{i=1}^{n} C_i}{n} ,$$

где C_i — измеренное в соответствии с настоящим стандартом значение удельной теплоемкости образцовой меры при каждой температуре измерения, Дж/кг-К;

n — число измерений.

Проверяют не является ли измеренное единичное значение C промахом, которое оценивают по величине параметра (r), вычисляемого по формуле

$$r = \frac{(C_{\ell} - \overline{C})}{\sqrt{\sum_{\substack{l=1\\ n}}^{n} (C_{\ell} - \overline{C})^{2}}}.$$

Если r > 1,92, то значение (C_l) исключают и проводят новое измерение.

5. Случайную составляющую погрешности ($\mathring{\Delta}$) в процентах вычисляют по формуле

$$\mathring{\Delta} = \frac{\overline{\sigma}t_{\alpha}}{\overline{C}} \cdot 100,$$

где t_{α} — коэффициент Стьюдента (для $n=5,\ t_{\alpha}$ =0,95)

среднее квадратическое отклонение, Дж/кг.К.

6. Среднее квадратическое отклонение (с) в Дж/кг.К вычисляют по формуле

$$\overline{\sigma} = \sqrt{\frac{\sum_{t=1}^{n} (C_t - \overline{C})^2}{(n-1)}}$$

где \overline{C} — среднее значение удельной теплоемкости образцовой меры, Дж/кг.K; C_i — измеренное в соответствии с настоящим стандартом значение удель ной теплоемкости образцовой меры при каждой температуре измерения, Дж/кг.K;

n — число измерений.

7. Поверка прибора предназначена для сравнения результатов измерений удельной теплоемкости образцовой меры, выполненных на приборе ИТ-С-400, с данными метрологической аттестации образцовой меры.

ПР**ИЛОЖЕНИЕ 3** Справочное

СПРАВОЧНЫЕ ДАННЫЕ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ

	Удельная теплоемкость, Дж/кг.К				
Температура испытания, °С	Медь марки М ₁ по ГОСТ 859—78	Нержавеющая сталь марок 12 X18M.9T, 12 X18M.10T по ГОСТ 5632—72	Корунд		
Минус 100	345	_	403.6		
Минус 75	358	_	495,0		
Минус 50	3 6 5	_	577,9		
Минус 25	373		652,0		
0	37 6		718,8		
25	385	_	779,0		
50	392	_	825,8		
7 5	396	_	872,0		
100	400	_	907,1		
125	403	490,6	941,8		
150	40 5	497,6	968,2		
175	405	504,4	994,6		
200	408	511,1	1016,0		
225	410	517,6	1037,0		
250	412	524,0	1054,4		
275	415	530,2	1071,4		
30 0	417	536,2	1085,8		
325	420	542,2	1099,9		
350	42 2	547,9	1112,1		
375	423	553,4	1124,0		
400	425	558,9	1134,4		

ПРИЛОЖЕНИЕ 4 Рекомендуемое

Температура, °С	Масса, образ- ца, кг	Время запаздывания температуры ампулы с образцом по отношению к температуре основания, т _т с	Постоянные прибора		Удельная
			К Т, Вт/К	-°, C	теплоемкость, С _р , Дж/кг·К
Минус 100 Минус 75 Минус 50 Минус 25 0 25					
50 75 и далее че- рез 25°C до 400°C					