КРЕМНИЙ КРИСТАЛЛИЧЕСКИЙ

Метод определения алюминия

ГОСТ 19014.1—73*

Crystal silicon.

Method of aluminium determination

Взамен ГОСТ 2178—54 в части разд. III

ОКСТУ 1709

Постановлением Государственного комитета стандартов Совета Министров СССР от 23 июля 1973 г. № 1804 срок введения установлен

c 01.01.75

Проверен в 1984 г. Постановлением Госстандарта от 15 августа 1984 г. № 2874 срок действия продлен до 01.01.90

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает объемный метод определения алюминия (при массовой доле алюминия от 0.3 до 1.6%) в кристаллическом кремнии.

Метод основан на удалении кремния в виде фторида и отделении мешающих компонентов. Алюминий определяют комплексонометрическим методом, титруя избыток трилона Б раствором азотнокислого цинка с индикатором ксиленоловым оранжевым при рН 5,5.

В стандарте учтены требования рекомендации СЭВ по стандартизации РС 3085—71.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа — по ГОСТ 19014.0—73.

2. РЕАКТИВЫ И РАСТВОРЫ

Кислота фтористоводородная по ГОСТ 10484—78. Кислота азотная по ГОСТ 4461—77. Кислота серная по ГОСТ 4204—77, разбавленная 1:1. Кислота соляная по ГОСТ 3118—77, разбавленная 1:1.

Издание официальное

Перепечатка воспрещена

^{*} Переиздание (ноябрь 1985 г.) с Изменениями № 1, 2, утвержденными в июле 1979 г., августе 1984 г. (ИУС 8—79, 11—84)

Натрия гидрат окиси по ГОСТ 4328—77, раствор с массовой долей 20%.

Калий пиросернокислый по ГОСТ 7172-76.

Цинк металлический гранулированный по ГОСТ 989—75.

Стандартный раствор азотнокислого цинка, 0,05 М раствор; готовят следующим образом: 3,269 г цинка растворяют при нагревании в смеси 100 см³ воды и 15 см³ азотной кислоты. Раствор выпаривают до 5—10 см³ и разбавляют водой до 1000 см³.

Аммиак водный по ГОСТ 3760—79.

Натрий уксуснокислый по ГОСТ 199—78.

Кислота уксусная по ГОСТ 61-75.

Ацетатный буферный раствор; готовят следующим образом: 250 г кристаллического уксуснокислого натрия помещают в мерную колбу вместимостью 1000 см³, растворяют в воде, добавляют 20 см³ уксусной кислоты, доводят водой до метки и перемешивают.

Ксиленоловый оранжевый, раствор с массовой долей 0,1%.

Раствор годен в течение 10 дней.

Трилон Б (комплексон III, двунатриевая соль этилендиаминтетрауксусной кислоты) по ГОСТ 10652—73, 0,05 М раствор; готовят следующим образом: 18,6 г трилона Б растворяют в воде; фильтруют в мерную колбу вместимостью 1000 см³, разбавляют водой до метки и тщательно перемешивают.

Для определения поправочного коэффициента 0,05 М раствора трилона Б отбирают из бюретки 20 см³ раствора трилона Б в коническую колбу вместимостью 500 см³ и разбавляют водой до 200 см³. Прибавляют 5—6 капель ксиленолового оранжевого и по каплям аммиак до появления синей окраски, которую устраняют добавлением по каплям соляной кислоты, разбавленной 1:1, до появления желтой окраски. Затем в колбу приливают 20 см³ ацетатного буферного раствора и титруют раствором азотнокислого цинка до изменения окраски из желтой в розовую.

Поправочный коэффициент для 0,05 М раствора трилона Б (К) вычисляют по формуле

$$K=\frac{v}{v_1}$$

где v — количество 0,05 M раствора азотнокислого цинка, см³;

 v_1 — количество раствора трилона Б, см³.

Если для контрольного опыта берут столько же раствора трилона Б, сколько для пробы, то поправочный коэффициент для раствора трилона Б можно не определять.

(Измененная редакция, Изм. № 2).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску кремния 2 г помещают в платиновую чашку вместимостью 200 см³, смачивают водой, добавляют 30 см³ фтористо-

водородной кислоты, затем небольшими порциями $15~{\rm cm}^3$ азотной кислоты.

Осторожным вращением перемешивают содержимое чашки. Но окончании бурной реакции стенки чашки ополаскивают водой, добавляют 5 см³ серной кислоты, разбавленной 1:1, и выпаривают на бане до появления белых паров ангидрида серной кислоты. Затем охлаждают, осторожно обмывают стенки чашки водой из промывалки и выпаривают на бане досуха.

К сухому остатку прибавляют 5 г пиросернокислого калия и сплавляют в муфеле при температуре около 800°С. Плав растворяют при нагревании, добавляя 15 см³ соляной кислоты, разбавленной 1:1, и 40—50 см³ воды, переводят в мерную колбу вместимостью 250 см³, охлаждают, доводят водой до метки и перемешивают.

Из приготовленного таким образом раствора определяют содержание алюминия, железа, кальция и титана, отбирая на каждое определение соответствующую аликвотную часть.

Из мерной колбы вместимостью 250 см3 отбирают 100 см3 раствора в мерную колбу вместимостью 250 см3, добавляют 25 см3 раствора трилона Б, нагревают почти до кипения, прибавляют при перемешивании 50 см3 раствора гидроокиси натрия, охлаждают, доводят водой до метки и перемешивают. Раствор фильтруют через сухой складчатый фильтр «синяя лента». Фильтрат собирают в сухую коническую колбу. Первые порции фильтрата отбрасывают.

Отбирают 100—200 см³ раствора, помещают в коническую колбу вместимостью 500 см³, добавляют 3—4 капли ксиленолового оранжевого и нейтрализуют раствор соляной кислотой, разбавленной 1:1, до перехода окраски индикатора в желтый цвет. После нейтрализации к раствору прибавляют 20 см³ ацетатного буферного раствора, кипятят 2—3 мин, охлаждают, вновь прибавляют 3—4 капли ксиленолового оранжевого и оттитровывают избыток трилона Б раствором азотнокислого цинка до изменения окраски раствора из желтой в розовую.

Одновременно через все стадии анализа проводят контрольный опыт на загрязнение реактивов.

4. ПОДСЧЕТ РЕЗУЛЬТАТОВ АНАЛИЗА

4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{(vK - v_1) \cdot 0.00135 \cdot V \cdot 100}{m \cdot V_1},$$

где v — количество приблизительно 0,05 M раствора трилона Б, содержащееся в аликвотной части, взятой для титрования, см 3 ;

К — поправочный коэффициент для 0,05 М раствора трилона Б;

 v_1 — количество 0,05 M раствора азотнокислого цинка, израсходованное на титрование избытка трилона Б, см³;

V — общий объем раствора, см³;

 V_1 — аликвотная часть раствора, см³;

m — навеска кремния, г.

Если для контрольного опыта прибавляют столько же раствора трилона B, сколько для пробы, то массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{(v-v_1) \cdot 0.00135 \cdot V \cdot 100}{V_1 m},$$

- где υ количество 0,05 M раствора азотнокислого цинка, израсходованное на титрование избытка трилона Б в контрольном опыте, см³;
 - v_1 количество 0,05 M раствора азотнокислого цинка, израсходованное на титрование избытка трилона Б в пробе, см³;

V — общий объем раствора, см³;

 V_1 — аликвотная часть раствора, см³;

т -- навеска кремния, г.

(Измененная редакция, Изм. № 2).

4.2. Допускаемые расхождения между крайними результатами анализа не должны превышать величин, указанных в таблице.

Массовая доля алюминия, %	Допускаемые расхождения между крайними результатами анализа, абс %
От 0,3 до 1,0	0,03
Свыше 1,0 до 1,6	0,06

(Измененная редакция, Изм № 1).

Изменение № 3 ГОСТ 19014.1—73 Креминй кристаллический. Метод определения влюминия

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 27.06.89 № 2091

Дата введения 01.01.90

Наименование стандарта. Заменить слово: «Метод» на «Методы», «Method» на «Меthod».

Вводную часть изложить в новой редакции: «Настоящий стандарт устанавливает титриметрический и атомно-абсорбционный методы определения алюминия (при массовой доле алюминия от 0,30 до 1,60 %) в кристаллическом кремини». Стандарт дополнить разделом — 1a:

«1a. Титриметрический метод

Сущность метода состоит в удалении кремния в виде тетрафторида в отделении титана и железа в виде гидроксидов. Алюминий определяют комплексонометрическим методом, титруя избыток трилона Б раствором азотнокислого цинка с индикатором ксиленоловым оранжевым при рН = 5.5».

с индикатором ксиленоловым оранжевым при рН = 5,5».
Раздел 2. Седьмой абзац. Заменить слова: «гранулированный — по ГОСТ 989—75» на «по ГОСТ 3640—79», «0,05 М раствор» на «раствор с молярной кон-

пентрацией 0.05 моль/дм³» (5 раз);

доподнить абзацами: «Натрий углекислый по ГОСТ 83-79.

Нагрий тетраборнокиолый 10-водный по ГОСТ 4199—76, обезвоженный при 440 °C.

Смесь для сплавления: смешивают натрий углекислый и натрий, тетраборно-

кислый в соотношении 6:1 (по массе)».

Пункт 3.1. Первый абзац после слова «кремния» дополнить словом: «массой»; третий абзац изложить в новой редакции: «К сухому остатку прибавляют 5 г пиросернокислого калия и сплавляют в муфеле при температуре 800 °С или сухой остаток сплавляют с 8 г смеси для сплавления в муфеле при температуре 950 °С. Плав растворяют, добавляя 15—30 см³ соляной кислоты, разбавленной 1:1, и 40—50 см³ воды, нагревают для полного растворения плава, переводят в мерную колбу вместимостью 250 см³, охлаждают, доводят до метки водой и переменивают»;

четвертый абзац. Заменить слово: «содержание» на «массовую долю». Раздел 4 изложить в новой редакции:

<4. Обработка результатов

4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{(v \cdot K - v_1) \cdot 0.00135 \cdot V \cdot V_8 \cdot 100}{V_1 \cdot V_8 \cdot m} ,$$

где v — объем раствора трилона Б с молярной концентрацией 0,05 моль/дм³, содержащийся в аликвотной части, взятой для титрования, см³;

К — поправочный коэффициент раствора трилона Б с молярной концентрацией 0.05 моль/дм³;

0.05 моль/дм³, выраженный в граммах алюминия, на см³;

V — общий объем раствора, см³;

 V_2 — объем мерной колбы, в которой производят отделение железа и титана, см 3 :

V₁ — объем аликвотной части раствора, отбираемой для отделения железа и титана, см³:

V₃ — объем аликвотной части раствора, отбираемый для определения алиминня, см³;

т - масса навески креминя, г.

Если для контрольного опыта прибавляют столько же раствора трилона Б, сколько для пробы, то массовую долю алюминия (X_1) в процентах вычнеляют по формуле

$$X_1 = \frac{(v-v_1) \cdot 0,00135 \cdot V \cdot V_2 \cdot 100}{V_1 \cdot V_2 \cdot m}$$
,

еде v — объем раствора азотнокислого цинка с молярной концентрацией 0,05 моль/дм³, израсходованный на титрование избытка трилена Б в контрольном опите, см²;

 v_1 — объем раствора азотнокислого динка, с молярной концентрацией 0.05 моль/дм³, израсходованный на титрование избытка трилона E в

жробе, см³;

V — общий объем раствора, см³;

 V_2 — объем мерной колбы, в которой производят отделение железа и титана,

 V_1 — объем аликвотной части раствора, отбираемый для отделения железа и титана, см³:

 V_3 — объем аликвотной части раствора, отбираемый для определения алиминия, см 3 :

т - масса навески кремния, г.

4.2. Допускаемые расхождения результатов параллельных определений не должны превышать значений, приведенных в таблице.

Массовая доля алюминая, %	Допускаемые рас- жождения сходи- мости, %	Допускаемые рас- кождения воспро- изводимости, %
От 0,30 до 1,00 включ.	0,03	0,05
Св. 1,00 » 1,60 »	0,06	0,09

Метод применяют при разногласиях в оценке качества кремния кристаллического».

Стандарт дополнить разделами — 5-8:

«5. Атомно-абсорбционный метод

Сущность метода состоит в измерении атомной абсорбции алюминия при длине волны 309,3 им в пламени закись азота—ацетилен.

6. Аппаратура, реактивы и растворы

Атомно-абсорбционный сцектрометр со всеми принадлежностями типа «Перкин Эльмер», «Сатурн» или аналогичный.

Лампа с полым катодом для алюминия.

Ацетилен в баллонах технический по ГОСТ 5457-75.

Закись азота в баллонах медяцинская,

Кислота соляная по ГОСТ 3118-77, разбавленная 1:1.

Кислота азотная по ГОСТ 4461-77.

Кислота фтористоводородная по ГОСТ 10484-78.

Кислота серная по ГОСТ 4204-77, разбавленная 1:1.

Натрий углекислый по ГОСТ 83-79.

Натрий тетраборнокислый 10-водный по ГОСТ 4199-76, обезвоженный при

Смесь для сплавления: смешивают натрий углекислый и натрий тетраборнокислый в соотношении 6:1 (по массе). Алюминий марки A995 по ГОСТ 11069—74.

Стандартный раствор алюминия: 0,5000 г алюминия помещают в стакан вместимостью 400 см³, небольшими порциями добавляют 50 см³ соляной кислоты. разбавленной 1:1. Раствор нагревают до полного растворения алюминия. После охлаждения раствор переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

1.0 см3 раствора содержит 0.001 г алюминия.

Раствор-фон: 160 г смеси для сплавления помещают в стакан вместимостью 1000 см3, смачивают водой и осторожно, небольшими порциями, приливают 700 см³ соляной кислоты, разбавленной 1:1.

После растворения раствор переводят в мерную колбу вместимостью

1000 см³, доливают до метки водой и перемешивают.

7. Проведение анализа

7.1. Навеску кремния массой 2 г помещают в платиновую чашку, смачивают водой, добавляют 30 см³ фтористоводородной кислоты, затем небольшими порциями 15 см³ азотной кислоты.

Осторожным вращением перемешивают содержимое чашки. По окончании бурной реакции стенки чашки ополаскивают водой, добавляют 5 см3 серной кислоты, разбавленной 1:1, и выпаривают на бане до появления белых паров серной кислоты. Затем охлаждают, осторожно обмывают стенки чашки водой и выпаривают на бане досуха.

К сухому остатку прибавляют 8 г смеси для сплавления и сплавляют в муфеле при температуре 950 °С. Плав растворяют, добавляя 30 см³ соляной кислоты разбавленной 1:1, и 40—50 см³ воды, нагревают до полного растворения плава, переводят в мерную колбу вместимостью 250 см3, охлаждают, доводят до метки водой и перемешивают.

В приготовленном растворе определяют массовую долю алюминия, кальция, железа и титана. Одновременно через все стадии анализа проводят контрольный

В полученных растворах проб, растворе контрольного опыта и в растворах для построения градуировочного графика измеряют значение атомной абсорбции алюминия при длине волны 309,3 им в пламени закись азота-ацетилен.

Массу алюминия в растворе пробы и в растворе контрольного опыта опреде-

ляют по градуировочному графику, который строят при каждой съемке.

7.2. Построение градуировочного графика

В шесть мерных колб вместимостью 250 см3 приливают по 50 см3 растворафона. Затем вводят 0; 2,0; 5,0; 10,0; 20,0; 30,0 см3 стандартного раствора, что соответствует 0; 0,002; 0,005; 0,010; 0,020; 0,030 г алюминия. Растворы доливают до метки водой, перемешивают и измеряют абсорбцию растворов, как указанов п. 7.1.

По полученным значениям атомной абсорбции и соответствующим им массам алюминия строят градуировочный график.

8. Обработка результатов

8.1. Массовую долю алюминия (Х2) в процентах вычисляют по формуле

$$X_2 = \frac{(m_1 - m_2) \cdot 100}{m}$$

- где m_1 масса алюминия в растворе пробы, найдениая по градунровочному графику, г;
 - m₂ масса алюминия в растворе контрольного опыта, найдениая по градунровочному графику, г;
- т. масса навески пробы, г.
 8.2. Допускаемые расхождения результатов параллельных определений ве должны превышать значений, приведенных в таблице.

(HYC No 11 1989 r.)