УДК 669.715′782: 546.72.06: 006.354 Группа **В59**

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СИЛУМИН В ЧУШКАХ

Методы определения железа

FOCT

1762.2-71

Aluminium-silicon alloy ingots. Methods for determination of iron

OKCTY 1709

Срок действия

с 01.01.73 до 01.07.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает фотометрический и атомно-абсорбционный методы определения железа (при массовой доле железа от 0,15 до 1,0%) в силумине в чушках.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа—по ГОСТ.1762.0—71.

ФОТОМЕТРИЧЕСКИЙ МЕТОД

Метод основан на измерении оптической плотности окрашенного в оранжево-красный цвет комплексного соединения железа (II) с о-фенантролином или α, α'-дипиридилом после предварительного восстановления железа гидрохлоридом гидроксиламина до-двухвалентного состояния.

(Измененная редакция, Изм. № 2).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Фотоэлектроколориметр типа ФЭК 56М, ФЭК-60, КФК или спектрофотометр типа СФ-26, СФ-16 или аналогичные.

Натрия гидроокись по ГОСТ 4328—77, раствор с массовой долей 30%.

Кислота соляная по ГОСТ 3118—77 и разбавленная 1:1.

Натрий уксуснокислый по ГОСТ 199—78, раствор с массовой долей 25%: готовят следующим образом: 250 г кристаллической соли растворяют в воде, фильтруют и разбавляют водой до 1 дм³.

Гидроксиламина гидрохлорид по ГОСТ 5456-79, свежеприго-

товленный раствор с массовой долей 10%.

Ортофенантролин, раствор с массовой долей 0,25%; готовят следующим образом: 0,25 г реактива растворяют при слабом нагревании в 100 см³ воды.

а, а'-дипиридил, раствор с массовой долей 0,25%:

0,25 мг реактива растворяют при слабом нагревании в 100 см³ волы.

Кислота азотная по ГОСТ 4461-77, разбавленная 1:1.

Железо карбонильное по ГОСТ 13610-79.

Стандартные растворы железа

Раствор A:1,0000 г железа растворяют в 20 см³ соляной кислоты, разбавленной 1:1. В конце растворения приливают 1—2 см³ азотной кислоты, разбавленной 1:1, для окисления железа и выпаривают до влажных солей. Соли растворяют в 20 см³ соляной кислоты, разбавленной 1:1, и раствор переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

1 см3 раствора А содержит 1 мг железа.

Раствор Б, готовят (перед применением): 25 см³ раствора А переносят пипеткой в мерную колбу вместимостью 500 см³, приливают 10 см³ соляной кислоты, разбавленной 1:1, доливают до метки водой и перемешивают.

1 см3 раствора Б содержит 0,05 мг железа.

(Измененная редакция, Изм. № 2, 3).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску силумина массой 0,5 г помещают в стакан вместимостью 250 см³ и приливают 20 см³ раствора гидроокиси натрия. После окончания бурной реакции раствор нагревают до полного растворения сплава, разбавляют водой и осторожно прибавляют 50 см³ соляной кислоты, разбавленной 1:1. Раствор нагревают до просветления. Охлажденный раствор переводят в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают.

В зависимости от содержания железа отбирают аликвотную часть $10-25~{\rm cm}^2$ в мерную колбу вместимостью $100~{\rm cm}^3$. Раствор разбавляют водой до $50~{\rm cm}^3$, приливают $5~{\rm cm}^3$ раствора гидроксиламина, $10~{\rm cm}^3$ раствора уксуснокислого натрия (бумажка конго в этом случае окрашивается в красный цвет) и $10~{\rm cm}^3$ раствора ортофенантролина или α , α' -дипиридила. Раствор разбавляют до метки водой, перемешивают и через $30~{\rm mun}$ измеряют оптическую плотность на фотоэлектроколориметре или на спектрофотометре, учитывая, что максимум светопоглощения растворов соответствует длине волны $510~{\rm hm}$.

Раствором сравнения служит вода.

Одновременно через все стадии анализа проводят контрольный опыт.

По величине оптической плотности испытуемого раствора с учетом контрольного опыта определяют массу железа по градуировочному графику.

3.2. Построение калибровочного графика

В семь мерных колб вместимостью по 100 см³ помещают 0; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 см³ стандартного раствора Б, что соответствует 0; 0,05; 0,10; 0,15; 0,20; 0,25 и 0,30 мг железа и разбавляют водой до 50—60 см³. Затем прибавляют по 5 см³ гидрохлорида, по 10 см³ раствора уксуснокислого натрия, по 5 см³ раствора ортофенантролина или α , α' -дипиридила доливают до метки водой, перемешивают и далее проводят анализ, как указано в п. 3.1. Раствором сравнения служит раствор, в который железо не добавляли.

По найденным значениям оптической плотности и известным массам железа в растворах строят градуировочный график.

(Измененная редакция, Изм. № 3).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю железа (X) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot V \cdot 100}{c_1 \cdot m \cdot 1000},$$

где m_1 — масса железа, найденная по градуировочному графику, мг:

V — общий объем раствора, см³;

 v_1 — объем аликвотной части раствора, см³;

т — масса навески силумина, г.

4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в таблице.

Массовая доля железа, %	Абсолютиме допускаемые расхождения, %	
	сходимости	воспроизводимости
От 0,15 до 0,40 включ. Св. 0,40 » 1,00 »	0,02	0,03 0,04

(Измененная редакция, Изм. № 2).

АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

Метод основан на измерении атомной абсорбции железа при распылении растворов проб в пламя ацетилен-воздух при длине волны 248.8 нм

5. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрометр атомно-абсорбционный модели Перкин-Эльмер, «Сатурн» или аналогичный.

Лампа полого катода, предназначенная для определения же-

леза.

Электропечь муфельная с терморегулятором, обеспечивающим температуру нагрева 1000°С.

Ацетилен в баллонах технический по ГОСТ 5457-75.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:1. Кислота азотная по ГОСТ 4461—77, разбавленная 1:1.

Водорода пероксид по ГОСТ 10929—76, раствор с массовой долей 3%.

Алюминий марки А999 по ГОСТ 11069-74.

Раствор алюминия А: 10,0 г алюминия помещают в стакан вместимостью 600 см3, добавляют 250 см3 соляной кислоты, разбавленной 1:1 и растворяют при нагревании с добавлением 1 см3 хлористого никеля. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см3, разбавляют водой до метки и перемешивают.

1 см3 раствора А содержит 0,02 г алюминия.

Кремния двуокись по ГОСТ 9428—78.

Раствор кремния Б: 2,14 г тонко растертой в агатовой или из оргстекла ступке и предварительно прокаленной в течение 1 ч при температуре 1000°C двуокиси кремния сплавляют в платиновом тигле с 15 г углекислого натрия при температуре 900°С в течение 15 мин до получения прозрачного плава. Плав растворяют в воде при нагревании в платиновой, серебряной или никелевой чашке. Раствор охлаждают, переводят в мерную колбу вместимостью 1000 см3, разбавляют водой до метки и перемешивают; хранят в полиэтиленовом сосуде.

1 см3 раствора Б содержит 0,001 г кремния.

Натрий хлористый по ГОСТ 4233—77.

Раствор оксида натрия В: 190 г высушенного при температуре 105°С в течение 30 мин хлористого натрия растворяют в воде Раствор переводят в мерную колбу вместимостью 1000 см3. доводят до метки водой и перемещивают.

1 см³ раствора В содержит 0,1 г оксида натрия.

Железо в виде проволоки или карбонильное по ГОСТ 13610-79.

Стандартные растворы железа

Раствор Д: 0,5000 г железа растворяют в 15 см³ соляной кислоты, разбавленной 1:1. В конце растворения приливают 1—2 см³ азотной кислоты, разбавленной 1:1, для окисления железа и выпаривают до влажных солей. Соли растворяют в 10 см³ соляной кислоты, разбавленной 1:1, и переносят раствор в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают; готовят перед применением.

1 см³ раствора Д содержит 0,001 г железа.

Раствор Е: отбирают пипеткой 50 см 3 раствора Д в мерную колбу вместимостью 100 см 3 , доводят до метки водой и перемешивают; готовят перед применением.

1 см3 раствора Е содержит 0,5 мг железа;

Натрий углекислый по ГОСТ 83-79.

Натрия гидроокись по ГОСТ 4328—77, раствор с массовой долей 30% .

Никель хлористый по ГОСТ 4038-79, раствор с массовой долей 0.2%.

Метиловый оранжевый, раствор с массовой долей 0,1%.

6. ПРОВЕДЕНИЕ АНАЛИЗА

6.1. Навеску пробы силумина массой 0,5 г помещают в стакан вместимостью 250 см³ и приливают 20 см³ раствора гидроокиси натрия. По окончании бурной реакции раствор нагревают на песчаной бане до полного растворения сплава, добавляют 70—80 см³ воды и осторожно приливают 50 см³ соляной кислоты, разбавленной 1:1. Раствор нагревают до просветления, прибавляют 1 см³ пероксида водорода и кипятят 3—5 мин для разрушения ее избытка.

Раствор охлаждают и переводят в мерную колбу вместимостью $250~{\rm cm^3}$, доводят до метки водой и перемешивают.

Для определения железа раствор пробы распыляют в воздущно-ацетиленовое пламя спектрометра и измеряют абсорбцию при длине волны 248,8 нм.

Одновременно через все стадии анализа проводят контрольный опыт с добавлением 20 см³ раствора алюминия A.

Массовую долю железа определяют по градуировочному графику с учетом контрольного опыта.

6.2. Построение градуировочного графика

В семь мерных колб вместимостью 250 см³ приливают последовательно по 12,5 см³ раствора A, по 7 см³ раствора B и соответственно 0; 1,0; 1,5; 2,5; 5,0; 7,5; 10,0 см³ раствора E, что со-

ответствует 0; 0,10; 0,15; 0,25; 0,50; 0,75; 1,0% массовой доле железа.

Растворы разбавляют водой до 100 см³ и медленно при тщательном перемешивании приливают по 25 см³ раствора Б, прибавляют 3—4 капли индикатора метилового оранжевого и по каплям соляную кислоту, разбавленную 1:1, до изменения окраски индикатора в красный цвет.

Затем растворы в колбах доводят до метки водой и перемешивают.

Приготовленные растворы фотометрируют на атомно-абсорбционном спектрометре одновременно с растворами проб, как указано в п. 6.1.

По полученным значениям атомной абсорбции растворов и известным массовым долям железа строят градуировочный график.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1. Массовую долю железа в процентах находят по градуировочному графику.

7.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в таблице.

Разд. 5-7. (Введены дополнительно, Изм. № 3).

информационные Данные

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ СТАНДАРТА

- А. А. Костюков, Г. А. Романов, Н. М. Герцева, А. П. Нечитайлов, В. А. Лавров
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 08.10.77 № 141
- 3. Периодичность проверки 5 лет
- 4. B3AMEH ГОСТ 1762—51 (разд.III)
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	
FOCT 83—79 FOCT 199—78 FOCT 1762.0—71 FOCT 3118—77 FOCT 4038—79 FOCT 4233—77 FOCT 4328—77 FOCT 4461—77 FOCT 5456—79 FOCT 5457—75 FOCT 9428—73 FOCT 10929—76 FOCT 11069—74 FOCT 13610—79	Разд. 5 Разд. 2 1.1 Разд. 2, 5 Разд. 5 Разд. 5 Разд. 2, 5 Разд. 2, 5 Разд. 2 Разд. 5 Разд. 5 Разд. 5 Разд. 5 Разд. 5	

- 6. Срок действия продлен до 01.07.95 Постановлением Госстандарта СССР от 27.03.89 № 742
- 7. ПЕРЕИЗДАНИЕ (май 1989 г.) с Изменениями № 1, 2, 3, утвержденными в июле 1979 г., августе 1984 г., марте 1989 г. [ИУС 8—79, 12—84, 6—89]