СТЕКЛО КВАРЦЕВОЕ ОПТИЧЕСКОЕ

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

межгосударствен.ный стандарт

СТЕКЛО КВАРЦЕВОЕ ОПТИЧЕСКОЕ

ГОСТ 15130—86

Общие технические условия

Silica optical glass. General specifications

OKII 59 3211

Дата введения 01.01.88

Настоящий стандарт распространяется на кварцевое оптическое стекло (далее — стекло), предназначенное для изделий, работающих при прохождении света в одном направлении, и выпускаемое в заготовках размером (диаметром или диагональю) не более 1200 мм.

Требования настоящего стандарта являются обязательными.

(Измененная редакция, Изм. № 2).

1. МАРКИ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ, КАТЕГОРИИ, КЛАССЫ

1.1. В зависимости от области спектрального пропускания устанавливают марки стекла, указанные в табл. 1.

Таблица 1

Обозначен ие марки стекла	Характеристика
КУ-1	Стекло кварцевое оптическое, прозрачное в ультрафиолетовой и видимой областях спектра, без полос поглощения в интервале длин волн 170—250 нм, с полосами поглощения в интервалах длин волн 2100—2300 нм и 2600—2800 нм (в соответствии с черт. 1, 6 приложения 3), нелюминесцирующее, радиационно-оптически устойчивое
КУ-2	Стекло кварцевое оптическое, прозрачное в ультрафиолетовой и видимой областях спектра, со слабой полосой поглощения в интервале длин волн 170—250 нм, с полосой поглощения в интервале 2600—2800 нм (в соответствии с черт. 2, 7 приложения 3)
KB	Стекло кварцевое оптическое, прозрачное в видимой области спектра, с полосами поглощения в интервалах длин волн 170—250 нм и 2600-2800 нм (в соответствии с черт. 3, 8 приложения 3)
КИ	Стекло кварцевое оптическое, прозрачное в видимой и инфракрасной областях спектра, без полосы поглощения в интервале длин волн 2600—2800 нм (в соответствии с черт. 4, 9 приложения 3)
КУВИ	Стекло кварцевое оптическое, прозрачное в ультрафиолетовой, видимой и инфракрасной областях спектра, со слабыми полосами поглощения в интервалах длин волн 170—250 нм и 320—350 нм, с полосой поглощения в интервале 2600—2800 нм (в соответствии с черт. 5, 10 приложения 3), нелюминесцирующее, радиационно-оптически устойчивое

П р и м е ч а н и е. Требования для стекла марки КУВИ введены в действие с 01.01.89.

(Измененная редакция, Изм. № 1).

Издание официальное

Перепечатка воспрещена

*

© Издательство стандартов, 1987 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями

C. 2 FOCT 15130-86

1.2. Для стекла каждой марки устанавливают показатели качества, указанные в табл. 2.

Таблица 2

Марка стекла	Показатели качества
КУ-1	Показатель поглощения в ультрафиолетовой области спектра, люминесценция, радиационно-оптическая устойчивость оптическая устойчивость
КУ-2	Показатель поглощения в ультрафиолетовой области спектра, люминесценция
КВ	Показатель поглощения в види- мой области спектра
КИ	Показатель поглощения в инфракрасной области спектра
КУВИ	Показатель поглощения в ультрафиолетовой, видимой и инфракрасной областях спектра, люминесценция, радиационно- оптическая устойчивость

Примечания:

- 1. Показатели качества устанавливаются по согласованию между потребителем и изготовителем, исходя из функционального назначения изделия из стекла.
- 2. Для стекла марки КВ допускается по согласованию между потребителем и изготовителем устанавливать требования по радиационно-оптической устойчивости.
- 1.3. Стекло выпускают в заготовках, представляющих собой диски или пластины прямоугольной формы, ограниченные параллельными плоскостями, размерами и массой не более указанных в табл. 3.

Таблица 3

Марка стекла	Диаметр или диагональ, мм	Толщина, мм	Масса, кт
КУ-1	400	50	13,900
КУ-2	1200	100	250,000
ΚВ	1200	130	325,000
KN	200	20	1,400
КУВИ	160	30	1,400

Примечания:

- 1. Диаметр (диагональ) заготовок должна быть не менее 50, толщина не менее 8 мм.
- 2. Требования для заготовок диаметром (диагональю) более 900 и толщиной более 100 мм введены в пействие с 01.01.89.
- 1.4. В зависимости от значения показателя поглощения стекла в ультрафиолетовой области спектра устанавливают 5 категорий, указанных в табл. 4.

Таблица 4

Категория стекла	Показатель поглощения a_{λ} , см $^{-1}$, не более, для длин волн		
категория стекла	170 нм	215 нм	240 нм
01	0,20	0,02	0,01
1	0,30	0,04	0,05
2	0,50	0,10	0,05
3	Us van smyana	0,15	0,10
4	Не нормируется	0,25	0,27

- 1.5. Значение показателя поглощения стекла в видимой области спектра не более 0,005 см⁻¹.
- 1.6. В зависимости от значения показателя поглощения стекла в инфракрасной области спектра устанавливают две категории, указанные в табл. 5.

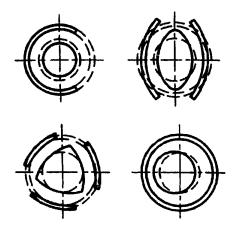
	Таблица 5
Категория стекла	Показатель поглощения a_{λ} , см $^{-1}$, не более, в интервале длин волн 2600—2800 нм
1	0,05
2	0,10

1.7. По люминесценции стекла, возбуждаемой ультрафиолетовым излучением, устанавливают две категории, указанные в табл. 6.

	1 аолица о
Категория стекла	Характеристика люминесценции
1	Люминесценция не допускается
2	Интенсивность люминесценции не должна превышать интенсивности люминесценции контрольного образца, утвержденного в установленном порядке

1.8. По оптической однородности стекла устанавливают 6 категорий, указанных в табл. 7. Оптическая однородность характеризуется значением отношения угла разрешения ф коллиматорной установки, в параллельный пучок которой введена заготовка стекла, к фактическому углу разрешения ϕ_0 той же установки. Стекло категорий 1 и 1а дополнительно характеризуется качеством дифракционного изображения точки в фокусе коллиматорной установки.

Таблица 7


Категория стекла	Отнощение ф∕ф ₀ , не более	Качество дифракционного изображения точки	• Примечание
1	1,0	Дифракционное изображение точки должно состоять из светлого круглого пятна с концентрически расположенным вокруг него узким светлым кольцом без разрывов и без заметного на глаз отклонения от окружности	рых длина хода луча не превышает 20 мм
la	1,0	Дифракционное изображение точки должно состоять из светлого круглого пятна с концентрически расположенным вокруг него узким светлым кольцом с допустимыми искажениями, указанными на чертеже	рых длина хода луча не
2	1,0		Для заготовок, в кото-
3	1,1	Не нормируется	рых длина хода луча не превышает 60 мм
4	1,2		inposition of the
5	1,5		

П р и м е ч а н и е. Для заготовок, в которых длина хода луча превышает 60 мм, показатель оптической однородности устанавливается по согласованию между потребителем и изготовителем.

(Измененная редакция, Изм. № 1).

С. 4 ГОСТ 15130-86

1.8.1. Допустимые искажения дифракционного изображения точки для стекла категории 1а оптической однородности должны соответствовать указанным на черт. 1.

Черт. 1

1.9. По двулучепреломлению стекла устанавливают 5 категорий, указанных в табл. 8.

Таблица 8

Категория стекла	Двулучепреломление, нм/см, не более
01	10
1	30
2	50
3	70
4	100*

^{*}Для стекла марки КИ.

П р и м е ч а н и е. Значение двулучепреломления вокруг конкретных включений и свилей устанавливают по согласованию между изготовителем и потребителем в технической документации на конкретное стекло.

(Измененная редакция, Изм. № 1).

1.10. По бессвильности стекла устанавливают две категории, указанные в табл. 9.

Таблица 9

Категория стекла	Характеристика бессвильности	
1	Не допускаются потоки нитевидных свилей, оптическое действие которых превышает оптическое действие контрольного образца свили категории 1 по ГОСТ 3521. Допускаются одиночные нитевидные свили, оптическое действие которых превышает оптическое действие контрольного образца свили категории 1, но не превышает оптическое действие контрольного образца свили категории 2, в количестве не более 5 шт. на 1 кг стекла и общей протяженностью не более одного диаметра или диагонали заготовки	
2	Не допускаются потоки нитевидных свилей, оптическое действие которых превышает оптическое действие контрольного образца свили категории 2 по ГОСТ 3521. Допускаются одиночные нитевидные свили, оптическое действие которых превышает оптическое действие контрольного образца свили категории 2, в количестве не более 10 шт. на 1 кг стекла и общей протяженностью не более одного диаметра или диагонали заготовки	

П р и м е ч а н и е. В стеклах 1-й и 2-й категорий бессвильности допускаются узловые свили, двулуче-преломление около которых не превышает установленное по п. 1.9 (примечание).

(Измененная редакция, Изм. № 1, 2).

1.11. По мелкозернистой неоднородности стекла устанавливают четыре категории, указанные в табл. 10, характеризуемые оптическим действием теневой картины контрольных образцов, утвержденных в установленном порядке.

Табляна 10

Категория стекла	Характеристика мелкозернистой неоднородности		
01	Не допускается мелкозернистая неоднородность		
1	Не допускается мелкозернистая неоднородность грубее, чем в контрольном образце, установленном для категории 1		
2	Не допускается мелкозернистая неоднородность грубее, чем в контрольном образце, установленном для категории 2		
3	Не допускается мелкозернистая неоднородность грубее, чем в контрольном образце, установленном для категории 3		

1.12. По пузырности стекла устанавливают семь категорий, характеризуемых диаметром наибольшего пузыря, допускаемого в заготовках стекла (табл. 11) и семь классов, характеризуемых числом пузырей размером 0,1 мм и более в 1 кг стекла заготовки (табл. 12).

За диаметр пузыря неправильной формы принимают среднее арифметическое значение его наибольшего и наименьшего размеров.

Таблица 11

Таблица 12

Категория пузырности стекла	Диаметр пузыря, мм, не более	Класс пузырности стекла	Число пузырей, шт./кг, не более
01	Пузыри не допускаются	a	80
1	0,1	б	100
2	0,2	В	150
3	0,5	r	400
4	1,0	д	500
5	2,0	e	1000
6	3,0	ж	2000

1.13. По включениям устанавливают пять категорий, характеризуемых размером наибольшего включения, допускаемого в заготовке стекла (табл. 13), и четыре класса, характеризуемые числом включений размером более 0,5 мм в 1 кг стекла заготовки (табл. 14).

За размер включения любой формы принимают среднее арифметическое значение его наи-большего и наименьшего размеров.

Таблица 13

Таблица 14

Категория	Размер включений, мм, не более			
стекла	непрозрачных и кристалли-	полу- прозрачных	ирозрачны	
01	Включения не допускаются			
1	0,5	2,0	4,0	
2	2,0	4,0	8,0	
3	3,0	6,0	13,0	
4	5,0	Не нормируется		

	Среднее число	э включений в более	1 кг стекла, не
Класс	непрозрачных и кристалли- ческих	полу- прозрачных	прозрачных
a	4	4	4
б	7	7	7
В	11	11	11
Г	15	15	15

Примечание. Число включений в заготовке стекла массой менее 1 кг входит в число пузырей заготовки.

С. 6 ГОСТ 15130-86

Пример условного обозначения кварцевого оптического стекла марки КВ: Стекло кварцевое КВ ГОСТ 15130—86

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Оптическое кварцевое стекло должно изготовляться в соответствии с требованиями настоящего стандарта по технологической документации, утвержденной в установленном порядке.
 - 2.2. Заготовки стекла по своим размерам должны соответствовать следующим требованиям.
- 2.2.1. Предельные отклонения от размеров заготовок и размеры фасок должны соответствовать требованиям, указанным в табл. 15.

	MM		Таблица 15			
Размер заготовок	Предельные откло	Предельные отклонения				
r asmep saturosek	диаметра, длины, ширины	толщины	более			
До 150 включ.	±1,0	±1,0	2			
Св. 150 до 300 включ.	±2,0	+2,0 —1,0	3			
Св. 300 » 500 »	+3,0 —2,0	+3,0 -2,0	5			
Св. 500 » 700 »	±3,0	+3,0 -2,0	10			
Св. 700 » 1200 »	±5,0	+4,0 -3.0	12			

- 2.2.2. Отнощение диаметра или диагонали заготовки к толщине должно находиться в пределах (5:1)—(15:1).
 - 2.2.3. Отношение сторон прямоугольной заготовки должно быть не более 3:1.
- 2.2.4. Допускается изготовлять заготовки с другим соотношением размеров по согласованию между потребителем и изготовителем.
- 2.2.5. Для изделий с малыми размерами (менее 50 мм) допускается изготовлять заготовки размеров, кратных размерам изделий, с припуском на каждый рез по 2 мм, с нормированием показателей качества, установленных для кратной заготовки.
- 2.3. Две противоположные рабочие поверхности заготовок должны быть шлифованными или полированными. По согласованию между изготовителем и заказчиком допускается поверхность заготовок не обрабатывать.
- 2.4. Глубина механических дефектов (выколок, посечек) не должна быть более установленной в табл. 16.

Таблина 16

	Глубина меха	анических дефектов,	мм, не более, при мас	се заготовки
Сторона заготовки	до 0,200 кг включ.	св. 0,200 до 0,500 кг включ.	св. 0,500 до 50,000 кг включ.	св. 50,000 до 325,000 кг включ.
Рабочая	0,5	1,0	1,5	3,0
Нерабочая (цилиндрическая или боковая)	1,0	1,5	2,0	5,0'

2.5. В краевой (нерабочей) зоне заготовки шириной, равной 0,05 ее диаметра или диагонали, показатели качества не нормируют.

2.6. По показателю поглощения в ультрафиолетовой и инфракрасной областях спектра, по люминесценции, двулучепреломлению, бессвильности и мелкозернистой неоднородности стекло следует изготовлять любых категорий, не выше указанных в табл. 17.

Таблипа 17

													140	лиц	a 17
				1	Катего	рия сте	жла дл	и заго	товок 1	размер	ов, мм				
Наименование показателя качества		до 1	150 вкл	воч.		c	в. 150	до 300	включ	I.		300 до включ.		св. 50 12 вкл	00
						N	1ар к	а ст	гекл	a					
	Ky-1	KУ-2	Æ3	KM	КУВИ	Ky-1	Ky-2	ΚB	КИ	КУВИ	Ky-1	Ky-2	KB	KУ-2	KB
1. Показатель по- глощения в ультра- фиолетовой области спектра	01	1			1	1	2		_	1	1	2		2	
2. Показатель по- глощения в инфра- красной области спектра				1	1	_	_		1	1		_	_		
3. Люминесценция	1	2	_		1	1	2	-		1	1	2	_	_	_
4. Двулучепрелом- ление	01	1	1	4	1	01	1	1	4	1	1	2	2	2*	2*
5. Бессвильность	1	1	1	2	1	1	2	2	2	1	1	2	2	2*	2*
6. Мелкозернистая неоднородность	01	1	1	3	01	01	2	2	3	01	1	2	2	2*	2*

^{*}Контроль проводится по согласованию между изготовителем и потребителем.

2.7. По оптической однородности стекло следует изготовлять категорий, указанных в табл. 18.

Таблица 18

Марка стекла	Категория	стекла по оптической одно	ородности для заготовок ј	размером, мм
	до 150 включ.	св. 150 до 300 включ.	св. 300 до 500 включ.	св. 500 до 1200 включ.
КУ-1	1-4	2-4	3—5	
КУ-2	1-4	1a—5	25	_
KB	14	1a5	25	
ки	3—5	3—5	_	
КУВИ	1a5	25		_

2.8. По пузырности стекло следует изготовлять категорий, указанных в табл. 19, и классов, не ниже указанных в табл. 20.

				Ka	тегория	стекла	при мас	се загот	овки, кг			
	,	до 0, 50 0	включ.		св. 0,	,500 до :	1,000 вк	люч.	CB.	1,000 до 2	2,000 вкл	. РО
Наименование показателя качества					M	1арк	а ст	екла				
	Ky-1	KУ-2, KB	КИ	КУВИ	KV-1	KV-2, KB	КИ	КУВИ	Ky-1	KУ-2, KB	КИ	КУВИ
Пузырность (кате- гория)	01—4	01—5	2—6	1-4	014	2—5	26	1-4	01—5	3-5	3—6	15
Включения (категория, класс)	01-2	01—3	1—4	1-4	01-2	1—3	2-4	1-4	1a3r	1в—4в	2б—4г	1a—46

Продолжение

			Кат	егория сте	кла при ма	ссе загото	вк и, к г		
	св. 2,000 вкл	до 5,000 юч.		св. 5,000 до 8,000 св. 8,000 до 25,000 включ.			св. 25,000 до 100,000 включ.	св. 100,000 до 325,000 включ.	
Наименование показателя качества				Ма	рка ст	екла			
		KB		Æ		KB	1	82	
	KУ-1	KУ-2,	KV-1	KV-2,	KV-1	KV-2,	KУ-2,	KV-2,	
Пузырность (кате- гория)	1—5	36	15	4—6	16	46	46	56*	
Включения (кате- гория, класс)	1а—4в	3в—4г	1а—4г	3в4г	1а—4г	3в—4г	4в—4r	4*	

^{*}Допускаемое количество пузырей и включений устанавливается при заказе по согласованию между изготовителем и заказчиком.

Таблипа 20

			таблица 20
		Категория пузырности	
Марка стекла	1—2	34	5—6
		Класс пузырности	
КУ-1	a	б	В
КУ-2, КВ	б	д	e
КИ	r	е	ж
КУВИ	a	б	В

П р и м е ч а н и е. По согласованию с заказчиком стекло категорий 1—4 допускается изготовлять других классов, но не ниже установленных для категорий 5—6 соответствующих марок стекла.

(Измененная редакция, Изм. № 1).

- 2.9. По включениям стекло следует изготовлять категорий и классов, указанных в табл. 19.
- 2.9.1. В стекле марки КИ не допускаются стекловидные включения размером более 5,0 мм. Число стекловидных включений размером от 3,0 до 5,0 мм входит в число пузырей заготовки. Стекловидные включения размером менее 3 мм не нормируются.
- 2.10. Радиационно-оптическая устойчивость стекла к воздействию гамма-излучения, характеризуемая изменением оптической плотности на 1 см стекла, облученного на радиационной установке, должна соответствовать указанной в табл. 21.

Таблица 21

	Из	менение оптичес	ской плотности	ΔD_{λ} , см $^{-1}$, не бо	олее, для длин во	лн
Экспозиционная доза излучения, Р (Кл/кг)		300 нм			540 нм	
nsiyacana, i (iciyai)			Марка	стекла		
	КУ-1	КУВИ	КВ	КУ-1	куви	КВ
104 (2,58)	-	_	0,050	_		0,005
10 ⁵ (2,58 · 10 ¹)		_	0,150		_	0,010
10 ⁶ (2,58 · 10 ²)	0,050	0,070		0,005	0,005	
10 ⁸ (2,58 · 10 ⁴)	0,200	0,300	_	0,025	0,030	

(Измененная редакция, Изм. № 1, 2).

3. ПРАВИЛА ПРИЕМКИ

- 3.1. Заготовки оптического кварцевого стекла принимают партиями.
- 3.2. За партию принимают количество заготовок одного вида и размера из стекла одной марки, предъявленных к приемке по одному документу.

(Измененная редакция, Изм. № 1).

- 3.3. Контроль качества стекла осуществляют по согласованным между изготовителем и потребителем показателям в соответствии с требованиями настоящего стандарта.
- 3.4. Для проверки соответствия заготовок стекла установленным требованиям проводят приемо-сдаточные и периодические испытания.
- 3.5. При проведении приемо-сдаточных испытаний применяют сплошной и выборочный контроль.
- 3.5.1. На соответствие согласованным при заказе требованиям, за исключением требований к показателю поглощения и радиационно-оптической устойчивости, контролируют каждую заготовку.
- 3.5.2. Проверку на соответствие требованиям к показателю поглощения стекла (за исключением стекла марки КВ) осуществляют выборочно.

При контроле стекла марок КУ-1, КУ-2, КУВИ и КИ проверяют один образец (или заготовку) от каждой плавки.

В случае несоответствия показателя поглощения установленным требованиям проводят повторные испытания удвоенного количества образцов.

Результаты повторных испытаний являются окончательными и распространяются на всю партию.

(Измененная редакция, Изм. № 1).

- 3.5.3. Показатель поглощения стекла марки КВ и радиационно-оптическую устойчивость стекла проверяют только при периодических испытаниях по п. 3.6.
- 3.6. Периодические испытания проводят на соответствие всем требованиям настоящего стандарта один раз в год.

Испытанию подвергают не менее трех заготовок, взятых выборочно от разных партий, выдержавших приемо-сдаточные испытания.

В случае неудовлетворительного результата испытаний хотя бы по одному из показателей следует проводить повторные испытания удвоенного количества заготовок. Результат повторной проверки считают окончательным.

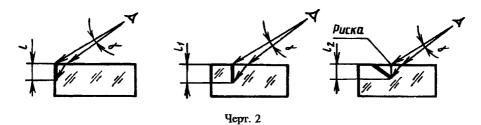
4. МЕТОДЫ КОНТРОЛЯ

4.1. При проведении приемо-сдаточных и периодических испытаний должны применяться методы контроля, указанные ниже.

Допускается применять другие методы (приборы), обеспечивающие требуемую точность измерения.

- 4.2. Размеры заготовок следует проверять любым измерительным инструментом, обеспечивающим требуемую точность измерения.
 - 4.3. Определение глубины механических дефектов

Наличие механических дефектов (выколок, посечек) определяют путем просмотра заготовок на темном фоне при направленном боковом освещении лампой мощностью 100—200 Вт.


Глубину выколок измеряют с помощью индикаторного глубиномера по ГОСТ 7661 или индикатора часового типа ИЧ05 1-го класса точности по ГОСТ 577 со стальным удлиненным измерительным наконечником НРДС-0,6 2-го класса точности по ГОСТ 11007, закрепленным на стойке типа С-IV по ГОСТ 10197.

Глубину посечек оценивают визуальным сравнением с контрольным образцом. Требования к контрольному образцу изложены в приложении 4.

Заготовки со шлифованными поверхностями непосредственно перед контролем смачивают иммерсионной жидкостью ($n_D = 1,46$) или керосином ($n_D = 1,45$).

Контрольный образец располагают как можно ближе к измеряемой посечке таким образом, чтобы посечка и соответствующий сегмент контрольного образца находились приблизительно под одним углом зрения γ , и проводят визуальное сравнение с чертежом на контрольный образец. При этом глубину посечек, идущих в направлении, перпендикулярном поверхности просмотра, l_1 оценивают сравнением ее с высотой соответствующего сегмента контрольного образца l (черт. 2).

При определении глубины посечек, идущих под углом к поверхности просмотра, l_2 на поверхности заготовки над основанием посечки наносят стеклографом риску и расстояние от риски до основания посечки сравнивают с контрольным образцом.

Допускается глубину выколок и наклонных посечек определять с помощью микроскопа типа МБС или другого, конструкция которого позволяет проводить перефокусировку и, при необходимости, с незначительными конструктивными изменениями измерять продольное перемещение микроскопа или предметного столика с точностью 0,1 мм. В этом случае на стойке микроскопа крепят в дополнительной оправе индикатор ИЧ05.

Перед измерением глубины наклонных посечек шлифованную поверхность заготовки смачивают иммерсионной жидкостью или керосином. Проводят фокусировку микроскопа сначала на поверхность заготовки, а затем на основание выколки или посечки. Значение перефокусировки h определяют с помощью индикатора.

За глубину выколок принимают полученное значение перефокусировки. Глубину наклонных посечек (b) в мм рассчитывают по формуле

$$l_2 = h \cdot n_D,$$

где h — значение перефокусировки, мм;

*n*_D — показатель преломления кварцевого стекла.

(Измененная редакция, Изм. № 2).

4.4. Определение показателя поглощения

Метод определения заключается в измерении коэффициента пропускания (τ_{λ}) или оптической плотности (D_{λ}) с последующим расчетом показателя поглошения.

Коэффициент пропускания (оптическую плотность) измеряют на приборах, указанных в табл. 22 или любых других приборах с аналогичными метрологическими характеристиками.

Таблица 22

Наименование прибора	Обозначение прибора	Рабочий диапазон длин волн, ны
Вакуумный монохроматор	BMP-2	170210
Вакуумный спектрофотометр	ВСФ-2МП	120—400
Спектрофотометр	СФ-4А СФ-16 СФ-26 СФ-46	200—1100
Спектрофотометр	СФ-8	1000—2000
Инфракрасный спектрофотометр	ИКС-22	750—4500
	ИКС-29	2400—25000

Контроль проводят на образце или заготовке.

Образцы для испытания — плоскопараллельные полированные пластины толщиной $(10\pm0,1)$ мм, размером рабочих поверхностей: $(28\pm0,5)\times(15\pm0,5)$ мм — для приборов типа ВМР и СФ и $(35\pm0,5)\times(15\pm0,5)$ мм (или диаметром 35 мм) — для приборов типа ИКС.

Параметр шероховатости (*Rz*) рабочей поверхности образца должен быть в пределах от 0,050 до 0,025 мкм; чистота поверхности — PIV (для измерения на приборах типов ВМР и СФ) и PVI (для измерения на приборах типа ИКС); отклонение от параллельности рабочих поверхностей образца — не более 3'.

Образцы не должны содержать видимых на глаз свилей, пузырей, включений.

Показатель поглощения допускается определять на образцах других размеров или непосредственно в заготовках (на приборе типа ИКС), если размеры их не ограничивают светового пучка прибора. При этом требования к-подготовке рабочих поверхностей заготовки соответствуют требованиям, предъявляемым к подготовке образца.

Измерение коэффициента пропускания (оптической плотности) проводят в соответствии с техническим описанием и инструкцией по эксплуатации прибора в рабочем направлении заготовки или образца, совпадающем с направлением оси наплава заготовки.

Значение показателя поглощения (a_1) , см⁻¹, рассчитывают по формуле

$$a_{\lambda} = \frac{D_{\lambda} - D_{\rho}}{S}$$
,

где D_{λ} — оптическая плотность, измеренная на приборе, имеющем шкалу плотности, или рассчитанная по формуле $D_{\lambda} = -\lg \tau_{\lambda}$, где τ_{λ} — коэффициент пропускания;

 D_{0} — поправка на отражение;

S — толщина образца, см.

4.5. Определение люминесценции

4.5.1. Качественный метод

Качественную оценку люминесценции проводят на любом люминескопе, ультрахимископе или другом приборе аналогичного типа с ртугно-кварцевой лампой и светофильтром типа УФС-1 по ГОСТ 9411 в затемненном помещении визуальным сравнением интенсивностей люминесценции испытуемой заготовки и контрольного образца. При этом толщина испытуемой заготовки не должна отличаться от толщины контрольного образца более чем на ±3 мм, что обеспечивается выбором соответствующего контрольного образца или наложением друг на друга нескольких контрольных образцов.

В набор контрольных образцов люминесценции должны входить образцы толщиной 10, 15, 20, 30, 40 мм.

Требования к контрольным образцам изложены в приложении 1.

Контроль заготовок размером более 150 мм проводят по зонам, определяемым выходным зрачком прибора.

4.5.2. Количественный метод (арбитражный)

Количественную оценку люминесценции проводят на двойном люминесцентном спектрометре СДЛ-1 или другом приборе подобного типа сравнением спектров люминесценции испытуемого образца (заготовки) и контрольного образца.

Образец для испытания должен соответствовать требованиям, предъявляемым к контрольным образцам. При этом размеры обработанных поверхностей его должны быть не менее $(30\pm1)\times(20\pm1)$ мм. Толщина образца должна быть равной толщине контрольного образца (расхождение по толщине не должно превышать 5%).

Контроль люминесценции можно проводить непосредственно в заготовке, если она удовлетворяет требованиям, предъявляемым к образцу для испытаний, и ее размер не превышает 150 мм.

Запись спектров люминесценции испытуемой заготовки (образца) и контрольного образца проводят при идентичных условиях, при этом длина волны возбуждающего света должна быть 248 нм, диапазон регистрации спектров люминесценции — 250—550 нм.

Пример записи спектра люминесценции приведен в приложении 1.

На полученных записях спектров металлической линейкой с ценой деления 1 мм по ГОСТ 427 измеряют ординату в максимумах интенсивности полос люминесценции (максимумы интенсивности могут быть определены по показаниям прибора), после чего вычисляют отношение интенсивности полос люминесценции испытуемого образца к интенсивности полос люминесценции контрольного образца. Оно не должно превыщать 1.

4.6. Двулучепреломление стекла определяют на поляриметрах типов ПКС-125, ПКС-250 или других приборах с аналогичными метрологическими характеристиками по ГОСТ 3519 в рабочем направлении. При этом за двулучепреломление заготовки стекла принимают максимальное значение из полученных при измерении.

Для стекла марки КИ двулучепреломление допускается измерять в направлении наибольшего размера заготовки.

Заготовки стекла всех марок толщиной до 10 мм не контролируют.

4.7. Бессвильность определяют по ГОСТ 3521 в рабочем направлении заготовки (без поворота ее) на установке с диафрагмой 2,0 мм при расстоянии от диафрагмы до экрана (8000±200) мм и от контрольного образца свили (заготовки) до экрана (2500±100) мм.

В заготовках размером до 300 мм бессвильность допускается проверять на установке с диафрагмой диаметром 2,0 мм по первой категории и 4,0 мм — по второй категории бессвильности при расстоянии от диафрагмы до экрана (750±50) мм и от контрольного образца свили (заготовки) до экрана (500±50) мм.

4.8. Мелкозернистую неоднородность определяют визуальным сравнением теневой картины заготовки и контрольного образца по методу, изложенному в ГОСТ 3521. При этом толщина испытуемой заготовки не должна отличаться от толщины контрольного образца более чем на ± 5 мм, что обеспечивается выбором соответствующего контрольного образца или наложением друг на друга нескольких контрольных образцов.

В набор контрольных образцов мелкозернистой неоднородности должны входить образцы толщиной 10, 20, 30, 40, 50, 60, 100 мм.

Требования к контрольным образцам изложены в приложении 2.

Определение проводят в рабочем направлении заготовки (без поворота ее) на установке с диафрагмой 4,0 мм при расстоянии от диафрагмы до экрана (8000±200) мм и от контрольного образца (заготовки) до экрана (2500±100) мм.

В заготовках размером до 300 мм мелкозернистую неоднородность допускается определять на установке с диафрагмой диаметром 2,0 мм и 4,0 мм — при расстоянии от диафрагмы до экрана (750±50) мм и от контрольного образца (заготовки) до экрана (500±50) мм.

Допускается определение проводить методом фотографирования на установке с диафрагмой диаметром 0,2 мм при расстоянии от диафрагмы до экрана (8000 ± 200) мм и от контрольного образца (3аготовки) до экрана (2500 ± 100) мм.

(Измененная редакция, Изм. № 1).

4.9. Оптическую однородность стекла определяют по ГОСТ 3518 в рабочем направлении. При этом определение оптической однородности стекла по автоколлимационной схеме по соглашению между потребителем и изготовителем допускается проводить в прямом проходящем свете.

Контроль оптической однородности стекла в заготовках размером св. 150 мм, предназначенных для деталей, работающих полным световым отверстием, проводят по зонам диаметром 150 мм в двух

взаимно перпендикулярных направлениях в пределах светового отверстия; зоны должны перекрываться по площади не менее чем на 30%.

Размер светового отверстия устанавливается при заказе и указывается на чертеже заготовки. Оптическую однородность стекла в заготовках размером менее 50 мм и св. 500 мм не контролируют.

4.10. Пузырность и включения определяют путем просмотра заготовки на темном фоне при направленном боковом освещении. В качестве источника света применяют лампу накаливания мощностью 100—200 Вт. Характер включения (прозрачное, полупрозрачное, непрозрачное — в соответствии с ГОСТ 16548) определяют при нормальном падении освещающего пучка на газетный лист.

Определение стекловидных включений проводят в проходящем свете при естественном или искусственном прямом освещении через рабочие поверхности заготовки. Рабочие поверхности заготовки должны быть полированными.

(Измененная редакция, Изм. № 1).

- 4.10.1. Размер пузырей (включений) в заготовке определяют визуально сравнением с контрольными образцами пузырей набора по ГОСТ 3522. Допускается размеры определять линейкой по ГОСТ 427 или измерительной лупой по ГОСТ 25706.
 - 4.10.2. Среднее число пузырей (включений) в 1 кг стекла заготовки определяют путем подсчета.
- 4.11. Радиационно-оптическую устойчивость кварцевого стекла к воздействию γ -излучения контролируют путем определения приращения оптической плотности образца стекла, облученного на радиационной установке типа MPX- γ -20 с источником излучения ⁶⁰Co мощностью дозы $(10\pm1)\cdot10^3$ P/ч.

Образец для испытания — по п. 4.4 настоящего стандарта.

Оптическую плотность до и после облучения измеряют в идентичных условиях при температуре (20 ± 5) °C на спектрофотометрах типа СФ-16, СФ-26, СФ-46 в соответствии с техническим описанием и инструкцией по эксплуатации, приложенной к ним. Предельная погрешность измерения не более 0.005.

Оптическую плотность облученного образца измеряют не позже чем через сутки после облучения. Ло измерения образец должен храниться в темноте.

(Измененная редакция, Изм. № 1).

5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1. Заготовки стекла, поступающие на упаковку, должны быть чистыми.
- 5.2. На каждой заготовке должна быть нанесена маркировка с указанием марки стекла, номера плавки, порядкового номера заготовки.

Маркировка не должна легко стираться.

(Измененная редакция, Изм. № 1).

- 5.3. Каждую заготовку заворачивают в папиросную бумагу по ГОСТ 3479, оберточную по ГОСТ 8273 или любую другую тонкую бумагу.
- 5.4. Заготовки диаметром до 200 мм упаковывают в ящики из гофрированного картона по ГОСТ 9142 с прокладкой ваты по нормативно-технической документации или другого мягкого прокладочного материала.

Заготовки диаметром до 100 мм допускается упаковывать небольшими пачками в оберточную бумагу по ГОСТ 8273 и перевязывать шпагатом по ГОСТ 17308.

Масса пачки должна быть не более 3 кг.

- 5.5. Заготовки диаметром более 200 мм, а также заготовки, упакованные в соответствии с требованиями п. 5.4, укладывают в неразборные дощатые ящики по ГОСТ 2991 типов I, II—I или III—I (размеры ящиков по ГОСТ 21140) с прокладкой стружки или опилок (влажностью не более 15 %). Заготовки массой свыше 30 кг укладывают в ящики поштучно.
- 5.6. Заготовки размером более 1000 мм упаковывают в деревянные ящики по технической документации предприятия-изготовителя, утвержденной в установленном порядке. Допускается в указанные ящики упаковывать заготовки меньшего размера (по п. 5.5).

Масса бругто ящика не должна превыщать 400 кг.

5.7. Укладка заготовок в ящики должна быть плотной, исключающей перемещение их внутри ящика. Во избежание этого свободные пространства в ящике заполняют сухим мягким прокладочным материалом.

Допускается любая другая упаковка заготовок стекла, обеспечивающая их сохранность.

C. 14 FOCT 15130-86

5.8. Каждая партия заготовок, а при поштучной отправке — каждая заготовка, должна сопровождаться документом о качестве, в котором должно быть указано:

наименование предприятия-изготовителя или его товарный знак;

условное обозначение стекла;

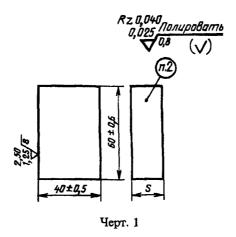
количество заготовок в партии;

номинальные размеры заготовок:

показатели качества заготовок;

штамп технического контроля.

5.9. При упаковывания партии заготовок в несколько ящиков документ о качестве вкладывают в каждый ящик или в один из них — ящик № 1, в упаковочном листе которого указывают количество и номера ящиков с заготовками данной партии.


(Измененная редакция, Изм. № 1).

- 5.10. Транспортная маркировка груза по ГОСТ 14192. При этом на транспортную тару должны быть нанесены несмываемой краской манипуляционные знаки «Хрупкое. Осторожно», «Верх». Допускается наносить указанные обозначения на ярлыках.
- 5.11. Стекло транспортируют всеми видами закрытого транспорта в соответствии с действующими правилами перевозок груза.
- 5.12. Размещение и крепление груза в транспортных средствах должно производиться в соответствии с требованиями погрузки и крепления, действующими на транспорте данного вида.
 - 5.13. Хранение заготовок стекла в условиях 1 (Л) и 2 (С) по ГОСТ 15150.

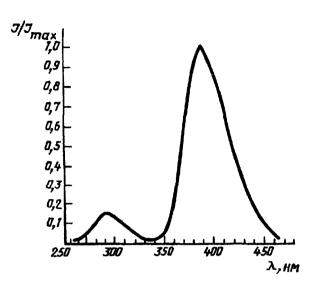
ПРИЛОЖЕНИЕ 1 Справочное

ТРЕБОВАНИЯ К КОНТРОЛЬНОМУ ОБРАЗЦУ ЛЮМИНЕСЦЕНЦИИ

1. Контрольные образцы люминесценции должны изготовляться из оптического кварцевого стекла в соответствии с черт. 1.

Примечание. Фаски на ребрах образца $0.5^{+0.6} \times 45^{\circ}$.

Категория люминесценции	Толщин	а <i>S</i> , мм	
ломинесценции	Номин.	Пред. откл.	
1,2	10	± 0,3	
2	15		
1,2	20	± 0,4	
2	30	·	
	40	± 0,5	

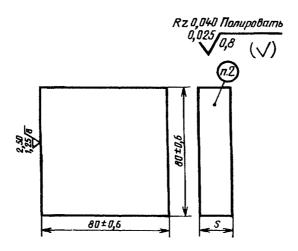

n _e	
$\Delta (n_F - n_C)$	
Оптическая однородность	
Двулучепреломление	
Показатель поглощения	
Бессвильность	-
Пузырность, включения	la
N	_
ΔN	_
P	
8	_
$f_{ m min}$	_
ı	_
CB. Ø	_
	•

^{2.} На контрольный образец должна быть нанесена маркировка: буква «Л», категория люминесценции, толщина образца.

Маркировку наносят гравировкой на пантографе или другим способом, обеспечивающим ее сохранность. Высота букв и цифр 4 мм, толщина штриха 0,2—0,3 мм, расстояние между буквами и цифрами 1 мм. 3. Контрольные образцы должны быть согласованы в установленном порядке.

С. 16 ГОСТ 15130--86

4. П р и м е р записи спектра люминесценции на спектрометре СДЛ-1 (черт. 2) для контрольного образца категории 2.


Черт. 2

Условия измерения: источник возбуждения — лампа ДРШ-500; сила тока лампы — 7, 8 А; фотоприемник — ФЭУ-39А; длина волны возбуждающего света, выделяемого монохроматором ДМР-4 — 248 нм; ширина входной, промежуточной и выходной щели спектрометра — 2 мм. Спектр записан без учета спектральной чувствительности прибора СДЛ-1. (Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 2 Справочное

ТРЕБОВАНИЯ К КОНТРОЛЬНОМУ ОБРАЗЦУ МЕЛКОЗЕРНИСТОЙ НЕОДНОРОДНОСТИ

1. Контрольные образцы мелкозернистой неоднородности должны изготовляться из оптического кварцевого стекла в соответствии с чертежом.

Категория мелкозернистой	Толщина <i>S</i> , мм			
неоднородности	Номин.	Пред. откл.		
	10	± 0,3		
	20, 30	± 0,4		
1, 2, 3	40	± 0,5		
	50	± 0,6		
	60	± 0,7		
	100	± 1,1		

n_e	_
$\Delta (n_F - n_C)$	
Оптическая однородность	
Двулучепреломление	-
Показатель поглощения	
Бессвильность	1
Пузырность, включения	2a
N	5
ΔN	0,5
P	IV
8	
f_{\min}	
CB. Ø	70

Примечания:

- 1. Фаски на ребрах образца $0.5^{+0.6} \times 45^{\circ}$.
- 2. На контрольный образец должна быть нанесена маркировка: буква «М», категория мелкозернистой неоднородности, толщина образца.

Маркировку наносят в соответствии с требованиями, изложенными в п. 2 приложения 1.

3. Контрольные образцы должны быть согласованы в установленном порядке.

(Измененная редакция, Изм. № 1).

ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ КВАРЦЕВОГО ОПТИЧЕСКОГО СТЕКЛА

- 1. Оптические постоянные при гемпературе 293 K (20°C)
- 1.1. Показатель преломления $n_e = 1,4601 \pm 4 \cdot 10^{-4}$

$$(n_{\rm D}=1,4584\pm4\cdot10^{-4})$$

1.2. Средняя дисперсия

$$n_{\rm F}$$
, $-n_{\rm C} = 0.00679 \pm 4 \cdot 10^{-5}$
 $(n_{\rm F} - n_{\rm C} = 0.00677 \pm 4 \cdot 10^{-5})$

- 1.3. Коэффициент дисперсии $v_D = 67,83$
- 1.4. Относительные частные дисперсии:

$$\frac{n_{\rm D}-n_{\rm C}}{n_{\rm F}-n_{\rm C}}=0,3014;$$

$$\frac{n_{\rm G} - n_{\rm F}}{n_{\rm F} - n_{\rm C}} = 0,5277.$$

П р и м е ч а н и е. Значения оптических постоянных получены в результате усреднения значений для стекла различных марок.

2. Показатель преломления n_{λ} при длинах волн λ , нм, указан в табл. 1.

Таблица 1

λ	n_{λ}	λ	n _λ	λ	n_{λ}
170,000	(1,615)				
185,000	(1,575)	587,561	1,458464	1395,060	1,445836
200,000	(1,550)	589,262	1,458404	1709,130	1,442057
214,438	1,53372	643,847	1,456704	1813,070	1,440699
280,347	1,494039	656,272	1,456367	2058,100	1,437224
302,150	1,487194	706,519	1,455145	2437,400	1,430954
365,015	1,474539	852,111	1,452465	3243,900	1,413118
404,656	1,469618	1013,980	1,450242	3302,600	1,411535
435,835	1,466623	1082,970	1,449405	3507,000	1,405676
546,074	1,460078	1128,660	1,448869	3706,700	1,399289

 Π р и м е ч а н и е. Значение n_λ при длинах волн 170, 185, 200 нм получены путем экстраполяции по кривой дисперсии (погрешность определения показателя преломления \pm 0,003).

3. Поправка на отражение $D_{\rm p}$ от двух поверхностей при длине волн λ , нм, указана в табл. 2.

Таблица 2

λ, нм	D_{\wp}	λ, нм	$D_{ ho}$	λ, нм	$D_{ m p}$
160		300	0,034	2800	0,026
170	0,049	400	0,032	3000	0,026
180	0,045	500	0,031	3200	0,025
190	0,043	1000	0,030	3400	0,025
200	0,041	1500	0,029	3600	_
210	0,040	1800	0,029	3800	_
220	0,039	2100	0,028	4000	
230	0,038	2400	0,028	4200	_
240	0,036	2600	0,027	4400	_
250	0,035	2700	0,026		

- 4. Термооптические и теплофизические характеристики
- 4.1. Термооптическую постоянную $V_{\rm C}$ определяют по формуле

$$V_{\rm C} = \frac{\beta}{n_{\rm C}-1} - \alpha ,$$

где β — температурное изменение относительного значения показателя преломления, K^{-1} ;

 α — температурный коэффициент линейного расширения, K^{-1} .

Среднее значение термооптической постоянной в пределах температур от 213 до 293 K (от минус 60 до плюс 20°C) равняется $213 \cdot 10^{-7}$ K $^{-1}$.

4.2. Температурные изменения показателя преломления β при повышении температуры на 1 K (1°C) в интервале температур от 173 до 333 K (от минус 100 до плюс 60°C) должны соответствовать указанным в табл. 3.

Таблица 3

Показатель	Температурное изменение показателя преломления $\beta \cdot 10^7$, при температуре, K(*C)							
прелом- ления	173 (—100)	203 (—70)	223 (—50)	253 (—20)	283 (+10)	293 (+20)	313 (+40)	333 (+60)
n_{C}	99	95	95	98	99	100	100	107
n_{D}	100	96	96	99	101	102	105	108
n _e	101	98	98	100	102	104	107	110
n _F	104	99	100	102	104	106	109	112

(Измененная редакция, Изм. № 2).

- 4.3. Степень черноты в пределах температур от 293 до 773 К (от 20 до 500 °C) равняется 0,93.
- 4.4. Коэффициент линейного расширения α , средний для интервала температур от 213 до T_i K (от минус 60 до T_i °C), указан в табл. 4.

Таблица 4

Температура (<i>T_i</i>), К (°C)	$\alpha \cdot 10^7$, K ⁻¹	Температура (<i>T_i</i>), К(°C)	α·10 ⁷ , K ⁻¹	Температура (<i>T_i</i>), К(°C)	$\alpha \cdot 10^7$, K^{-1}
213(—60) 323(+50) 373(+100) 423(+150) 473(+200) 523(+250)	2,0 4,0 5,0 5,5 5,6 5,7	573(+300) 623(+350) 673(+400) 723(+450) 773(+500) 823(+550)	5,9 5,8 5,8 5,8 5,7 5,7	873(+600) 923(+650) 973(+700) 1023(+750) 1073(+800)	5,6 5,5 5,4 5,3 5,2

4.5. Удельная теплоемкость при температурах от 273 до 1273 K (от 0 до 1000°C) указана в табл. 5.

Таблица 5

Температура, К(°С)	Теплоемкость, Дж/(кг · К)	Температура, K(°C)	Теплоемкость, Дж/(кг · К)
273(0)	693	623(350)	1060
293(20)	728	673(400)	1090
323(50)	773	723(450)	1110
373(100)	840	773(500)	1130
423(150)	899	823(550)	1140
473(200)	947	873(660)	1150
523(250)	988	1073(800)	1196
573(300)	1030	1273(1000)	1222

C. 20 FOCT 15130-86

4.6. Теплопроводность при температурах от 273 до 673 К (от 0 до 400°С) указана в табл. 6.

Таблица 6

Температура, К(°С)	Теплопроводность, Вт/(м·К)	Температура, К(°С)	Теплопроводность, Вт/(м·К)
273(0)	1,32	473(200)	1,61
293(20)	1,35	523(250)	1,66
323(50)	1,42	573(300)	1,70
373(Ì0Ó)	1,49	623(350)	1,74
423(150)	1,56	673(400)	1,81

4.7. Температура отжига указана в табл. 7.

Таблина 7

Manya arayra	Температура от	Температура отжига, К('С)		
Марка стекла	нижняя (соответствует вязкости 10 ^{13,5} Па · c)	верхняя (соответствует вязкости 10 ¹² Па · c)		
КУ-1	1253(980)	1353(1080)		
КУ-2	1343(1070)	1443(1170)		
KB	1363(1090)	1453(1180)		

4.8. Температура начала деформации (соответствует вязкости 10¹⁰ Па · с) указана в табл. 8.

Таблица 8

Марка стекла	Температура начала деформации, К(°С)
КУ-1	1523(1250)
КУ-2	1603(1330)
KB	1613(1340)
КИ	1608—1623(1335—1350)

4.9. Температура размягчения (соответствует вязкости $10^{6,6}$ Па · с) указана в табл. 9.

Таблипа 9

Марка стекла	Температура размягчения, K(*C)
КУ-1	1933(1660)
КУ-2	1993(1720)
KB	1973(1700)
КИ	1993(1720)

- 5. Электрические характеристики
- 5.1. Удельное электрическое сопротивление:

при 293 K (20°C) — выше 1 · 10²⁰ Ом · м;

при 773 K (500°C) — 7 · 109 Ом · м.

5.2. Тангенс угла диэлектрических потерь $tg\delta$ при частоте $9.5 \cdot 10^9$ $\Gamma_{\rm H}$:

при 293 K (20°C) $-1 \cdot 10^{-4}$;

при 1273 K (1000°C) — 5 · 10-4.

5.3. Диэлектрическая проницаемость ε при частоте 9.5 \cdot 10⁹ Гп:

при 293 K (20°C) — 3,8; при 1273 K (1000°C) — 4,0.

- 5.4. Пробивная напряженность электрического поля E_{rm} : при 293 К (20°C) — более 3,5 · 10⁴ кВ/м.
- 6. Механические характеристики
- 6.1. Предел прочности о при изгибе, МПа:

при 293 К (20°С) — не менее 39,2;

при 1073 K (800°C) — не менее 68,7.

6.2. Предел прочности о, МПа:

при сжатии — 588,6;

при ударном изгибе — 0,196—0,294.

- 6.3. Модуль упругости (Юнга) E = 73,6 ГПа.
- 6.4. Модуль сдвига G = 31,4 ГПа.
- 6.5. Коэффициент поперечной деформации (Пуассона) $\mu = 0,17-0,19$.
- 6.6. Плотность ρ при 293 K (20°C) 2,21 · 10³ кг/м³.
- 7. Акустические характеристики
- 7.1. Колебательная скорость, м/с:

продольных волн — 5960;

сдвиговых волн — 3730.

- 8. Фотоупругая постоянная (коэффициент Брюстера) в видимой области спектра $(3,5-3,7) \cdot 10^{-12} \text{ м}^2/\text{H}$.
- 9. Спектрально-оптические характеристики
- 9.1. Коэффициенты пропускания τ_{λ} при различных длинах волн в слое стекла толщиной 1 см указаны в табл. 10.

Таблица 10

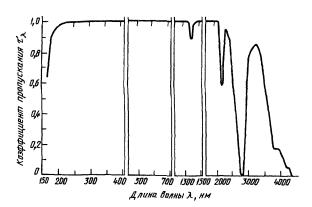
Длина волны λ, нм	Коэффициент пропускания τ _λ стекла марки				
	КУ-1	КУ-2	КВ	КИ	куви
170	0,630	0,495			0,565
180	0,900	0,660			0,845
190	0,940	0,755	_		0,915
200	0,960	0,845			0,935
210	0,980	0,920	0,030	0,075	0,950
215	0,985	0,940	<u> –</u>		0,960
220	0,990	0,950	0,220	0,220	0,970
230		0,945	0,565	0,435	0,980
240		0,920	0,540	0,525	0,980
250		0,940	0,715	0,585	0,980
260	>0,999	0,985	0,920	0,800	0,980
270		0,995	0,995	0,930	0,980
280		>0,999	>0,999	0,990	0,985
300		, , , , , , , , , , , , , , , , , , ,		12.2	0,980
325					0,970
350					0,980
400	0,999	>0,999	>0,999		0,990
500	0,222	,,,,,	- 0,555		3,225
750				>0,999	
1000					
1385	0,880	0,960	0,970		>0,999
2000	>0,999	>0,999	>0,999		
2200	0,580	0,900	0,925		
2300	0,880	0,955	0,955		
2380	0,950	0,970	0,970	>0,999	>0,999
2500	0,790	0,930	0,930	>0,999	>0,999
2720	0,000	0,000	0,030	>0,999	0,930
2800	0,000	0,015	0,150	0,955	0,935
2900	0,295	0,720	0,770	0,900	0,910
3000	0,670	0,810	0,810	0,870	0,880
3100	0,785	0,830	0,825	0,850	0,860
3300	0,855	0,860	0,850	0,870	0,875
3750	0,180	0,180	0,180	0,180	0,180
3910	0,185	0,185	0,185	0,185	0,185
4000	0,150	0,150	0,150	0,150	0,150
4220	0,050	0,050	0,050	0,050	0,050
4300	0,070	0,070	0,070	0,070	0,070
4400	0,000	0,000	0,000	0,000	0,000

 Π р и м е ч а н и е. Значения коэффициента пропускания получены усреднением результатов измерения. Потери на отражение от поверхностей исключены.

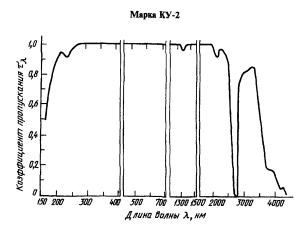
С. 22 ГОСТ 15130-86

9.2. Показатели поглощения a_{λ} при различных длинах волн в слое стекла толщиной 1 см указаны в табл, 11.

Таблипа 11

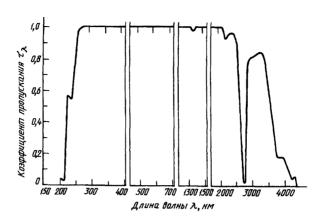

Длина волны λ,	Показатель поглощения a_{λ} , см $^{-1}$, стекла марки				
нм	КУ-1	КУ-2	КВ	ки	КУВИ
170	0,201	0,305			0,248
180	0,046	0,180			0,073
190	0,027	0,122	_		0,038
200	0,018	0,073			0,029
210	0,009	0,036	1,523	1,125	0,022
215	0,007	0,027	- 1		0,018
220	0,004	0,022	0,658	0,658	0,013
230		0,025	0,248	0,362	0,009
240		0,036	0,268	0,280	0,009
250		0,027	0,146	0,233	0,009
260	ļ	0,007	0,036	0,097	0,009
270		0,002	0,002	0,032	0,009
280		0,000	0,000	0,004	0,007
300	0,000				0,009
325		ļ			0,013
350					0,009
400		0,000	0,000		0,004
500					
750	}				
1000				0,000	
1385	0,056	0,018	0,013		0,000
2000	0,000	0,000	0,000		0,000
2200	0,237	0,046	0,034	1	
2300	0,056	0,020	0,020		
2380	0,022	0,013	0,013	j	
2500	0,102	0,032	0,032		
2720	>2,5	>2,5	1,523	0,000	0,032
2800	>2,5	1,824	0,824	0,020	0,029
2900	0,530	0,143	0,114	0,046	0,041
3000	0,174	0,092	0,092	0,060	0,056
3100	0,105	0,081	0,084	0,071	0,066
3300	0,068	0,066	0,071	0,060	0,058
3750	0,745	0,745	0,745	0,745	0,745
3900	0,733	0,733	0,733	0,733	0,733
4000	0,824	0,824	0,824	0,824	0,824
4220	1,301	1,301	1,301	1,301	1,301
4300	1,155	1,155	1,155	1,155	1,155
4400	>2,5	>2,5	>2,5	>2,5	>2,5

 Π р и м е ч а н и е. Значения показателя поглощения получены расчетным путем по формуле, указанной в п. 4.4 настоящего стандарта.

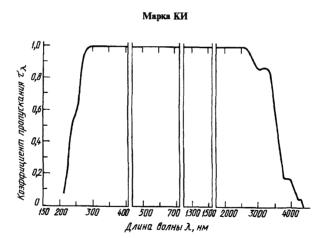

^{9.1, 9.2. (}Измененная редакция, Изм. № 2).

^{9.3.} Спектральные кривые коэффициента пропускания стекла в слое толщиной 1 см указаны на черт. 1—5, показателя поглощения — на черт. 6—10.

Марка КУ-1.

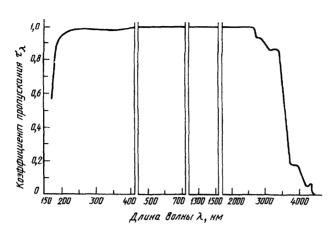


Черт. 1

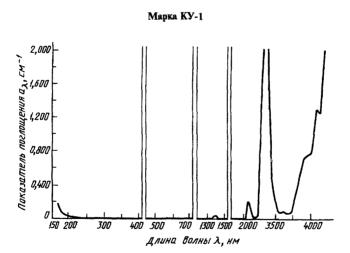


Черт. 2

Марка КВ

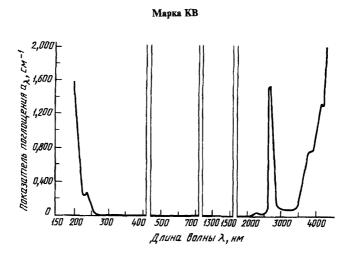


Черт. 3



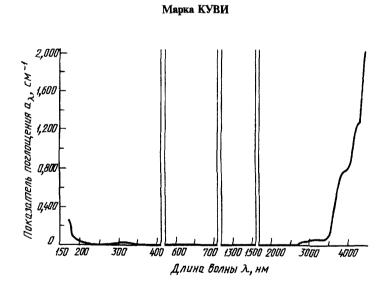
Черт. 4

Марка КУВИ


Черт. 5

Черт. 6

Марка КУ-2 2,000 Показатель поглощения ах, см-1 1,600 1,200 0,800 0,400 700 1300 1500 2000 150 200 300 400 500 3000 4000 Длина волны х, нм


Черт. 7

Черт. 8

Марка КИ 2,000 4,600 1,200 150 200 300 400 500 700 1300 1500 2000 3000 4000 Длина волны λ , нм

Черт. 9

Черт. 10

С. 28 ГОСТ 15130-86

10. Химическая устойчивость

10.1. Химическая устойчивость оптического кварцевого стекла, характеризуемая отношением потери массы стекла после трехчасового воздействия агрессивной среды к массе стекла до воздействия агрессивной среды, к активнодействующим реагентам приведена в табл. 12, к слабодействующим реагентам — в табл. 13.

Таблица 12

Характеристик	Потери массы		
Наименование химического элемента	Массовая доля, %	Температура, °С	стекла, %
Натрий едкий (NaOH)		Кипение раствора	75
Кислота фтористоводородная (НF)	20	19	60
Бифторид аммония (NH ₄ HF ₂)		19	40

Таблица 13

Характеристика агрессивной среды			Потери массы стекла, %, марки		
Наименование химического элемента	Массовая доля, %	Температура, °С	КУ	КВ	ки
Кислота азотная (HNO ₃)	65	Кипение	0,95	0,70	0,55
Кислота серная (H ₂ SO ₄)	95	кислоты		0,50	
Кислота соляная (HCl)	37	0,40			
Кислота уксусная (СН ₃ СООН)	96		0,20		

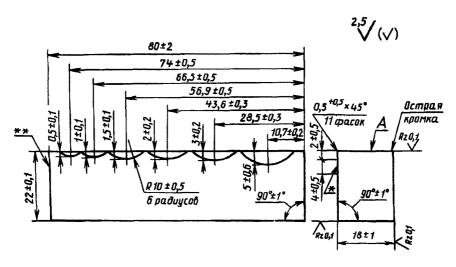
 Π р и м е ч а н и е. Значения потерь массы стекла получены путем усреднения результатов определения по ГОСТ 22291.

- 10.2. Кислотоустойчивость оптического кварцевого стекла, характеризуемая уменьшением коэффициента отражения от полированной поверхности стекла после воздействия реагента, соответствует группе 1 по ГОСТ 13917.
- 10.3. Устойчивость к влажной атмосфере оптического кварцевого стекла соответствует группе A по ГОСТ 13917.
- 11. Объем и состав растворенного газа, содержащегося в оптическом кварцевом стекле, приведены в табл. 14.

Таблица 14

Марка стекла		Объем газа в 1 кг			
Марка Стокла	H ₂	H ₂ O	N ₂ + CO	CO ₂	стекла, см ³
КУ-1 КУ-2 КВ КИ КУВИ	65-70 40-45 40-50 1-5 40-45	15-20 25-35 25-35 50-60 30-35	10—15 15—20 20—25 25—35 20—25	- 1-5 1-5 10-15 1-5	20-40 8-20 10-30 2-9 10-30

Примечание. Объем газа приведен к условиям ГОСТ 2939.


(Измененная редакция, Изм. № 2).

Разд. 9—11. (Введены дополнительно, Изм. № 1).

ПРИЛОЖЕНИЕ 4 Справочное

ТРЕБОВАНИЯ К КОНТРОЛЬНОМУ ОБРАЗЦУ ГЛУБИНЫ ПОСЕЧЕК

1. Контрольные образцы глубины посечек должны изготовляться из оптического кварцевого стекла в соответствии с чертежом.

^{*}Зона нанесения цифровых обозначений высоты сегментов.

^{**}Зона нанесения условного обозначения и номера контрольного образца.

Однородность	
Двулучепреломление	-
Показатель поглощения	_
Бессвильность	_
Пузырность	2в
Включения	la
Мелкозернистая неоднородность	
N	
ΔΝ	_
P _A	У1

- 2. Допуск параллельности плоскостей контрольного образца 0,5 мм.
- 3. Острая кромка не должна иметь видимых на глаз сколов.
- 4. Пузыри и включения, содержащиеся в контрольном образце, не должны накладываться на изображение сегментов.
- 5. Сегменты должны быть отшлифованы шлифпорошком M28 или M20 по ГОСТ 3647 до получения матовой поверхности.
- 6. На контрольный образец должна быть нанесена маркировка: буквы «ГП» (условное обозначение образца) и порядковый номер образца.
 - Маркировку наносят в соответствии с требованиями, изложенными в п. 2 приложения 1.
 - 7. Контрольные образцы должны быть согласованы в установленном порядке.

Приложение 4. (Введено дополнительно, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством промышленности строительных материалов СССР РАЗРАБОТЧИКИ

В.С. Хотимченко, канд. хим. наук; В.В. Жахов, канд. техн. наук; В.Г. Монастырский (руководитель темы); Л.А. Киселева; А.А. Сочилова; Г.И. Амур, канд. техн. наук; Л.Н. Орлова; А.Б. Боровская; С.Ф. Малышкин, канд. физ.-мат. наук; В.Х. Халилов, канд. физ.-мат. наук; В.К. Костюк; Л.А. Комарова, канд. хим. наук; Г.М. Сочивкин; С.С. Пивоваров, канд. физ.-мат. наук; Г.А. Дорфман, канд. техн. наук; В.Ф. Тарцев

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 03.12.86 № 3676
- 3. **ВЗАМЕН ГОСТ 15130—79**
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения	Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ГОСТ 427—75	4.5.2, 4.10.1	ГОСТ 9142—90	5.4
FOCT 577—68	4.3	ГОСТ 9411—91	4.5.1
ΓΟCT 2939—63	Приложение 3	FOCT 10197—70	4.3
ГОСТ 2991—85	5.5	FOCT 11007—66	4.3
ГОСТ 3479—85	5.3	FOCT 13917—92	Приложение 3
ГОСТ 3518—80	4.9	ГОСТ 14192—96	5.10
ГОСТ 3519—91	4.6	FOCT 1515069	5.13
ГОСТ 352181	1.10, 4.7, 4.8	ГОСТ 16548—80	4.10
ГОСТ 3522—81	4.10.1	FOCT 17308—88	5.4
ΓΟCT 3647—80	Приложение 4	ГОСТ 21140—88	5.5
ГОСТ 7661—67	4.3	ГОСТ 22291—83	Приложение 3
ГОСТ 8273—75	5.3, 5.4	ГОСТ 25706—83	4.10.1

- Ограничение срока действия снято по протоколу № 7—95 Межтосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- 6. ПЕРЕИЗДАНИЕ (апрель 1999 г.) с Изменениями № 1, 2, утвержденными в январе 1990 г., феврале 1991 г. (ИУС 5—90, 5—91)

Редактор Т.С. Шеко Технический редактор Н.С. Гришанова Корректор Е.Ю. Митрофанова Компьютерная верстка Е.Н. Мартемьяновой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 23.03.99. Подписано в печать 12.05.99. Усл. печ. л. 3,72. Уч.-изд. л. 3,40. Тираж 153 экз. С2804. Зак. 387.