

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

система стандартов безопасности труда ТРАКТОРЫ СЕЛЬСКОХОЗЯЙСТВЕННЫЕ И ЛЕСНЫЕ КОЛЕСНЫЕ

МЕТОД СТАТИЧЕСКИХ ИСПЫТАНИЙ ЗАЩИТНЫХ КОНСТРУКЦИЙ

ГОСТ 12.2.002.2—91

Издание официальное

ГОСУДАР СТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Система стандартов безопасности труда ТРАКТОРЫ СЕЛЬСКОХОЗЯЙСТВЕННЫЕ И ЛЕСНЫЕ КОЛЕСНЫЕ

Метод статических испытаний защитных конструкций

ГОСТ 12.2.002.2—91

Occupational safety standards system.
Agricultural and forestry wheeled tractors
Method of testing protective structures by a static load

OKΠ 47 0000

Дата введения 01.07 92

Настоящий стандарт распространяется на тракторы, имеющие, иак минимум, две оси с колесами на пневматических шинах как с гусетичным обводом, так и без него, массой от 800 до 15000 кг и с шириной колеи задних колес не менее 1150 мм.

Стандарт устанавливает метод испытаний защитных свойств при статическом нагружении защитных конструкций (кабин или каркасов) сельскохозяйственных и лесных колесных тракторов (далее — тракторов).

Стандарт не распространяется на узкогабаритные виноградниковые тракторы и тракторы, предназначенные для работы в низких помещениях и садах.

Требования настоящего стандарта являются обязательными.

- 1. Общие положения
- 1.1. Термины, применяемые в настоящем стандарте, и их пояснения даны в приложении 1.
- 12. Материалы, оборудование и средства для крепления должны быть достаточными для того, чтобы шасси трактора было прочно зафиксировано без опоры на шины.
- і 3. Приложение горизонтальной нагрузки осуществляют с помощью бруса длиной 250—700 мм и оно должно быть равномерным по длине. Равномерность приложения нагрузки при испытании определяют с шагом 50 мм

Кромки бруса, контэктирующие с защитной конструкцией, должны быть скруглены максимальным радпусом 50 мм

Издание официальное

С Издательство стандартов, 1991

Настоящий стандарт не может быть частично или полностью воспроизведен, тиражирован и распространен без разрешения Госстандарта СССР Следует применять универсальные шарниры или эквивалентные устройства с тем, чтобы нагружающее устройство не вызывало врашательного и поступательного перемещения в направлении, отличающемся от направления приложения нагрузки.

Если конфигурация защитной конструкции в месте приложения нагрузки не обеспечивает полного прилегания нагружающего бруса, то следует применять вспомогательный элемент, обеспечивающий равномерное распределение нагрузки по всей контактирующей поверхности.

1.4. Измерительное устройства при горизонтальном нагружении следует располагать так, чтобы регистрировать нагрузку и деформацию в точке и вдоль линии нагружения. Для обеспечения необходимой точности измерения следует проводить с непрерывной загисью. Измерительные устройства при испытании на сжатие должны фиксировать общее вертикальное усилие.

Допускаемые погрешности измерений приведены в приложении 2.

1.5. Подтверждение того, что зона свободного пространства не нарушена в ходе испытаний, должно осуществляться с помощью измерительных приспособлений. Допускается применять измерительное приспособление, соответствующее размерам зоны свободного пространства, приведенное в приложении 3.

2. Подготовка трактора и защитной конструкции к испытаниям

2.1. Испытуемый трактор с защитной конструкцией следует установить на опорной плите так, чтобы при нагружении не наблюдалось значительной деформации элементов, соединяющих ее с опорной плитой. При нагружении не должно быть иной опоры, кроме псходного закрепления.

Защитная конструкция должна соответствовать технической документации и должна быть установлена на шасси трактора соответствующей модели методом крепления, указанным предприятием-изготовителем.

- 2.2. Трактор с защитной конструкцией устанавливают и закрепляют так, чтобы вся подводимая энергия поглощалась защитной конструкцией и жесткими компонентами трактора.
- 23. Все съемные стекла, панели и элементы, не входящие в защитную конструкцию, следует снять, чтобы они не оказывали влияния на прочность защитной конструкции.

В случае, когда возможна эксплуатация трактора с открытыми или снятыми окнами и дверями, они должны быть также открыты или сняты при испытаниях.

2.4. Защитная конструкция должна быть оснащена необходимыми приборами, чтобы получить необходимые данные усилия деформации.

3. Метод испытаний

3.1. Последовательность испытаний

3.1.1. Испытания необходимо проводить в следующей последовательности:

а) Первое горизонтальное нагружение сзади или спереди (про-

дол-ное)

Для тракторов, у которых не менее 50 % массы трактора приходится на задние колеса, продольное нагружение следует проводить сзади. Для других тракторов продольное нагружение проводят спереди.

б) Первое испытание на сжатие

При первом испытании на сжатие вертикальную нагрузку прикладывают на ту часть защитной конструкции, на которой проводилось испытание при первом продольном нагружении.

в) Горизонтальное нагружение сбоку

При назвлии смещенного сиденья и (или) защитной конструкции несимметричной прочности боковую нагрузку прикладывают со стороны, наиболее вероятной для нарушения зоны свободного пространства.

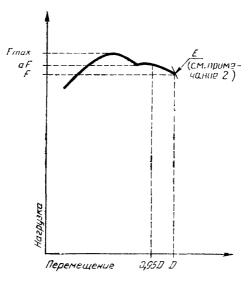
г) Второе испытание на сжатие

Вертикальную нагрузку прикладывают на часть защитной конструкции, прогивоположную той части, на которой проводились испытания при первом продольном нагружении.

д) Второе горизонтальное продольное нагружение

Второе продольное нагружение проводят на тракторе с откидывающейся кабиной в случае, если продольное усилие при первом продольном нагружении не было приложено в направлении, в котором защитная конструкция откидывается.

- 3.1.2 Все испытания следует проводить на одной и той же защитной консгрукции. Ремонт или упрочнение какого-либо элемента не следует проводить ни между этапами испытаний, ни перед последующим испытанием.
- 3.1.3. По окончании всех испытаний должны быть измерены и запрогоколированы остаточные деформации защитной конструкции.


Защитную конструкцию следует осматривать после каждого испытания при снятой нагрузке. Если трещины и разрывы возникают в процессе нагружения (кроме второго испытания на сжатие), то перегрузочные испытания по п. 4.3. проводят до прове-

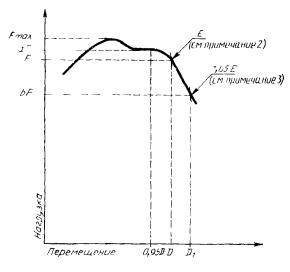
дения следующего нагружения в установленной последовательности.

- 3.2. Горизонтальное нагружение сзади, спереди и сбоку
- 3.2 1. Общие требования для испытаний горизонтальным нагружением
- 3.2.1.1. Нагрузки, прикладываемые к защитной конструкции, следует распределять с номощью жесткого бруса длиной 250—700 мм, расположенного перпендикулярно к направлению приложения нагрузки; жесткий брус допускается снабжать предохранителем для предотвращения смещения вбок. Интенсивность приложения нагрузки должна быть такой, чтобы нагрузку можно было считать статической. В процессе нагружения F и D следует измерять одновременно с непрерывной записью для повышения точности. Нагрузку не следует уменьшать до завершения испытаний.

Скорость де рормации под нагрузкой должна быть не более 5 мм/с. Примеры днаграмм нагрузка-перемещение даны на черт. 1a, 16, 1в.

Диаграмма нагрузка — перемещение

E — основная расчетная энергия, F — нагрузка по основной расчетной энергии, D — перемещение по основной расчетной энергии


Черт. 1а

Примечания:

1. aF нагрузка при перемещении 0,95 D.

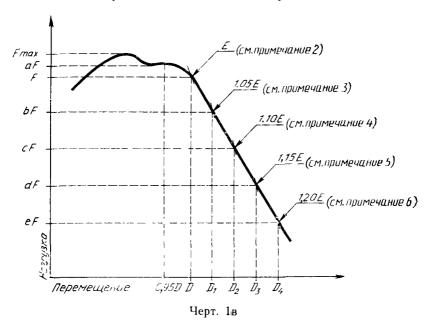
2 Нет необходимости в проведении испытаний на перегрузку, т. к $\alpha F < <1,03$ F

Диаграмма нагрузка — перемещение Испытание на перегрузку

Черг, 16

Примечания.

1 aF нагрузка при перемещении 0,95 D.


2 Испытания на перегрузку необходимы, т к aF>1,03 F

3 Испытания на перегрузку выдержаны удовлетворительно, т к bF > 0.97~F и $bF > 0.8~F_{max}$, где bF — нагрузка, соответствующая расчетной энергии 1.05~E 4 D_1 — перемещение при приложении энергии, равной 1.05~E

- 3.2.1.2. Если нет поперечного конструктивного элемента, расположенного в зоне приложения нагрузки, то для испытаний допускается применять испытательный брус, который не увеличивает прочности конструкции.
 - 322 Гервое продольное нагружение
- 3 2 2 ! Нагрузка должна прикладываться горизонтально, парадлельно продольной плоскости симметрии трактора спереди или сзади.

При нагружении сзади усилие прикладывают на стороне, противоположной предполагаемому нагружению сбоку. При нагружении спереди усилие прикладывают на той же стороне, что и при предполагаемом нагружении сбоку

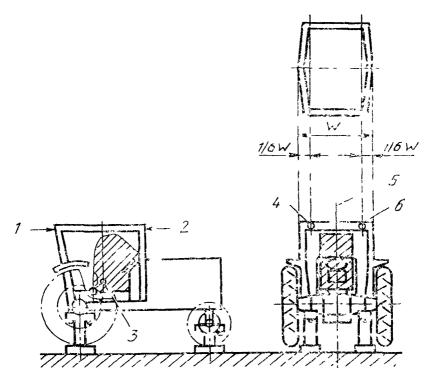
Диаграмма нагрузка — перемещение Продолжение испытаний на перегрузку

Примечания:

1. aF нагрузка при перемещении 0,95 D.

2. Испытания на перегрузку необходимы, т. к. aF > 1,03 F.

- 3. bF < 0,97 F, следовательно необходимо продолжение испытаний.
- 4. cF < 0.97 bF, следовательно необходимо продолжение испытаний. 5. dF < 0.97 cF, следовательно необходимо продолжение испытаний.
- 6. Испытания на перегрузку выдержаны удовлетворительно, т. к. $eF > 0.8~F_{\rm max}$.


7. Прекращать испытания на любой стадии, если нагрузка опускается ниже $0.8~F_{\rm max}$.

Нагрузку следует прикладывать к верхнему поперечному элементу защитной конструкции (то есть на ту часть, которая вероятнее всего первой ударится о грунт при опрокидывании).

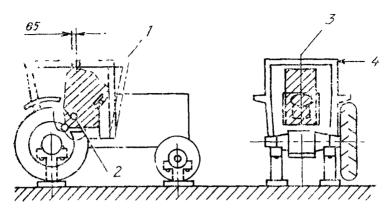
Точка приложения нагрузки располагается на расстоянии ¹/₆ ширины верхней кромки защитной конструкции от наружного угла в направлении оси симметрии (черт. 2). Ширину защитной конструкции определяют как расстояние между двумя линиями, параллельными продольной плоскости симметрии трактора, касающимися паружных выступающих элементов защитной конструкции в горизонтальной плоскости и концов самых верхних поперечных элементов.

Длина бруса должна быть не менее $^{1}/_{3}$ ширины защитной конструкции и не более чем на 49 мм больше этого значения.

Приложение нагрузки спереди и сзади

1 место приложения усилия свади 2 место приложения усили сверси 3 контрольная точка сиденья, 4 место второго продольного выружения сперси или сзади 5 продольная пентральная лини проходящая среконтрольную точку сиденья 6 место продольного нагружения сзади и сперси

Черт 2


Испытания прекращают, если:

- а) энергия деформации, поглощенная защитной конструкцией, равна или больше требуемой подводимой энергии (E_{tI_1}), Дж, где $E_{tI_1}=1,4~m_t$;
- б) защитная конструкция нарушила зону свободного пространства или зона свободного пространства оказывается незащищенной Размеры зоны свободного пространства установлены в приложении 4

323 Нагружение сооку

Нагрузку сбоку следует прикладывать горизонтально, перпендикулярно к продольной плоскости симметрии трактора к верхнему элементу защитной конструкции в точке, расположенной на расслоянии 85 мм вперед от контрольной точки сиденья, как указано на черг. 3

Приложение нагрузки сбоку

Леформация под деиствием продольного нагружения сзади 2 — контрольная точка сиденья. 3 продольная центральная линия проходящая через контрольную точку си ценья 4 нагрузка

Черт 3

Lean известно, что какой-либо боковой элемент первым коснется групта при опрокидывании, то нагрузка должна прикладываться к этой точке, обеспечивая при этом равномерное ее распределение. В случае двухстоечной конструкции боковую нагрузку следует прикладывать к верхнему элементу боковой стойки, вне зависимости от расположения контрольной точки сиденья

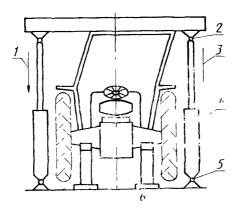
Брус должен быть требуемой длины, по не более 700 мм Пенытания прекращают, если:

а) энергия деформации, поглощенная защитной конструкцией, равна или больше требуемой подводимой энергии E_{C} , Дж, т е.

$$E_{ts} = 1.75 m_t$$

- б) защитиая конструкция нарушила зону свободного пространства или зона свободного пространства оказывается незащищенной
 - 33. Испытание на сжагне
 - 3.3.1. Сжатие сзади

Брус следует расположить поперек заднего, наиболее высоко расположенного элемента кабины (каркаса), а результирующее сжимающее усилие прикладывают в вертикальной плоскости. Прикладывают усилие


$$F_r = 20 \ m_r \ (11)$$

Усилие следует прикладывать, как минимум, в течение 5 с после прекращения визуально различимой деформации защитной конструкции. Если задняя часть защитной конструкции не выдерживает

полного сжимающего усилия, то нагружение проводят до тех пор, пока крыша в результате деформации совместится с плоскостью, соединяющей верхнюю часть защитной конструкции с той точкой задней части трактора, которая способна выдержать массу трактора при опрокидывании. После этого нагрузку снимают, а трактор или нагружающее устройство располагают так, чтобы брус находился над той точкой защитной конструкции, которая будет служить опорой для передней части трактора при его полном опрокидывании или полном приложении нагрузки.

Пример приспособления для приложения вертикальной статической нагрузки дан на черт. 4, при этом жесткий брус должен быть шириной 250 мм.

Пример приспособления для приложения вертикальной статической нагрузки

1, 3 — усилие: 2, 5 — универсальные шарниры; 4 — гидроцилиндр; 6 — подставки под передней и задней осями

Черт. 4

3.3.2. Сжатие спереди

Брус следует расположить поперек переднего, наиболее высоко расположенного элемента конструкции, а результирующее усилие $F_f = 20 \ m_t$ прикладывают в вертикальной основной плоскости

Это усилие следует прикладывать в течение, как минимум, 5 с после прекращения визуально различимой деформации защитной конструкции.

Если передняя часть защитной конструкции не выдерживает полного сжимающего усилия, то нагружение проводят до тех пор,

пока крыша в результате деформации совместится с плоскостью, соединяющей верхнюю часть защитной конструкции с той точкой передней части трактора, которая способна выдержать массу трактора при опрокидывании После этого нагрузку следует снять, а трактор или нагружающее устройство расположить так, чтобы брус находился над той точкой защитной конструкции, которая будег служить опорой для задней части трактора при его полном опрокидывании и при полном приложении нагрузки.

34 Второе продольное нагружение

Нагружение проводят со стороны, диаметрально противоположной продольному нагружению по п 322 согласно п. 3.21.

Испытания прекращают, если-

а) эмергия деформации, поглощенная защитной конструкцией, равна или больше требуемой подводимой энергии $E_{\ l}$, Дж, т е

$$E_{it_2} = 0.35 m_t$$

или

б) защитная конструкция нарушила зону свободного просгранства или зона свободного пространства оказывается незащищенной

4. Условия приемки

Защитная конструкция в ходе и после испытаний должна удовлетворять следующим условиям

4 1 Ни одна деталь не должна проникать в зону свободного пространства, за исключением условий, изложенных в п 4 3 2 3 Ни одна часть не должна ударять сиденье при испытании

Зона свободного пространства не должна выходить за пределы защигной конструкции.

- 42 В каждом из установленных испытаний горизонтальным нагружением при достижении требуемого значения энергии усилие должно быть не менее 0,8 $F_{\rm max}$
- 4 3 Если после испытаний горизонтальным нагружением появились трещины, разрывы или коробление, то необходимо проведение испытаний на перегрузку с целью определения остаточной прочности защитной конструкции (черт 1а—1в).
- $4\,3\,1\,$ Испытания на перегрузку необходимы, если усилие уменьшается более чем на $3\,\%$ при изменении перемещения на последних $5\,\%$ значения, установленного для полного поглощения требуемой энергии (черт. 16).
- $4\,3.2$. Испытание на перегрузку продолжение горизонтального нагружения с шагом $5\,\%$ исходной требуемой энергии до двадцатипроцентного увеличения энергии (черт. 1в).

 $4\,3\,2\,1$ Защитная конструкция считается успешно прошедшей испытания на перегрузку, если при поглощении 5, 10, 15 % увеличения энергии усилие уменьшается менее чем на 3 % на каждом пягипроцептном шаге, но при этом превышает 0,8 $F_{\rm max}$.

4 3 2 2 Защитная конструкция считается успешно прошедшей испытания на перегрузку, если при поглощении 20 % увеличения

энергии усилие превышает $0.8\ F_{\rm max}$.

4 3 2.3. При испытании на перегрузку допускается нарушение зоны свободного пространства и ее защищенности. После снятия нагрузки конструкция не должна нарушать зоны свободного пространства

4 4. Не должно быть никаких выступающих элементов или деталей, которые могут при деформации зажать оператора (например

его ногу или ступню).

4.5. Внутри защигной конструкции не должно быть никаких де-

талей, представляющих серьезную опасность для оператора.

4 6 Если к защитной конструкции предъявляется требование сопротивления хрупкому разрушению при низких температурах, то предприятие-изготовитель должно представить данные, которые включают в протокол испытаний.

Одним из методов получения данной информации является проведение испытаний по п 3 при температуре ниже минус 18 °C. Другие возможные методы приведены в приложении 5

5. Распространение результатов испытаний на другие модели тракторов

Если защитная конструкция соответствует условиям приемки, то она может быть использована на других моделях тракторов без проведения испытания по п 3 при условии, что защитная конструкция и трактор удовлетворяют условиям, установленным в пп. 5 1—5 4 В таких случаях протокол испытания должен содержать ссилку на предыдущие протоколы испытаний.

- 5 1 Масса другой модели трактора не должна превышать более чем на 5~% массу испытываемой модели трактора, на котором быщ проведены испытания.
- 52 Элементы трактора, на которые производится установка защитной конструкции, обладают идентичной или равнозначной прочностью с элементами испытанного трактора, а способы крепления защитной конструкции аналогичны
- 53 Любые детали, такие как крылья, капот и т. п., которые служат опорой для защитной конструкции, должны быть идентичны по прочности или гарантировать, как минимум, такую же прочность опоры.

C. 12 FOCT 12.2.002.2-91

5.4. Положение и предельные размеры сиденья в защитной конструкции на тракторе должны быть такими, чтобы зона свободного пространства оставалась внутри деформированной защитной конструкции после всех испытаний.

6. Маркировка

Если требуется установка таблички, то она должна содержать, как минимум, следуюндую информацию:

- а) наименование и адрес предприятия-изготовителя или разработчика защитной конструкции;
- б) номер (производственный или серийный) защитной конструк-
- в) марку трактора, модель или серийный номер установочных элементов;
- г) номер сгандарта, в соответствии с требованиями которого испытывалась зацитная конструкция.

Табличка должна быть прочной и постоянно прикреплена так, чтобы ее было удобно читать и чтобы она была защищена от повреждений.

7. Протокол испытаний

Протокол испытаний и техническую характеристику защитной конструкции следует оформлять в соответствии с приложениями 6 и 7.

ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, и их пояснения

ЗАЩИТНАЯ КОНСТРУКЦИЯ - кабина или каркас для защиты оператора трактора, предназначенная для сведения к минимуму вероятности сения оператору серьезной травмы в результате случайного опрокидывания при

нормальной эксплуатации трактора.

Защитная конструкция характеризуется тем, что она обеспечивает **30HV** свободного пространства как внутри самой конструкции, так и внутри RDOCTранства, обозначенного рядом прямых линий, проведенных от внешнего края конструкции к любой точке трактора, которая может войти в контакт с плоской поверхностью грунта и способна выдержать трактор в опрокинутом состоянии

МАССА ТРАКТОРА — масса ненагруженного трактора в рабочем нии с полными топливными баками и радиаторами с защитной конструкцией и элементами облицовки, с гусеничным обводом или с любым вспомогательным приводом передних ведущих колес, необходимыми для нормальной Масса оператора, балластных грузов, дополнительного специального оборудования и приспособлений не учитывается

РАСЧЕТНАЯ MACCA — масса не менее, чем масса трактора, выбранная

изготовителем для расчета подводимой при испытаниях энергии удара

ИСПЫТАНИЕ ГОРИЗОНТАЛЬНЫМ НАГРУЖЕНИЕМ — приложение го-

ризонтальной нагрузки сзади, спереди и сбоку защитной конструкции Допускается изменение направления нагрузки, вызванное деформацией бины при нагружении.

ИСПЫТАНИЕ СЖАТИЕМ — приложение вертикальной нагрузки

брус, расположенный поперек верхней части защитной конструкции. ВЕРТИКАЛЬНАЯ ОСНОВНАЯ ПЛОСКОСТЬ — вертикальная продольная плоскость трактора, проходящая через контрольную точку сиденья и центр рулевого колеса

Обычно эта плоскость совпадает с продольной плоскостью симметрии трак-

тора

обозначения

m- масса трактора, кг. - расчетная масса, кг; m_f

 деформация защитной конструкции по основной расчетной энергии в точке и по линии приложения нагрузки, мм,

статическая нагрузка. Н:

 F_{\max} — максимальная статическая нагрузка при испытаниях (исключая пеperpysky). H.

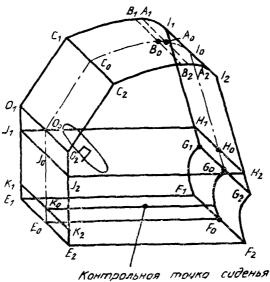
 E_{ts} — энергия, поглощаемая защитной конструкцией при боковом нагру-

 $E_{1/2}$ — энергия, поглощаемая защитной конструкцией при первом продольном нагружении, Дж,

 $E^{i}_{l_{2}}$ — энергия, поглощаемая защитной конструкцией при втором продольном нагружении, Дж;

- усилие, прилагаемое сзади при испытаниях на сжатие, Н;

- усилие, прилагаемое спереди при испытаниях на сжатие, Н.


допускаемые погрешности измерений

- 1 Размеры защитной конструкции и зоны свободного пространства ± 3 мм
- 2 Деформация ±3 мм 3 Масса трактора ±20 кг
- 4 Усилие, прикладываемое при горизонтальном нагружении и при испытании сжатием, ±2%
- 5 Отклонение от направления приложения нагрузки перед началом испытаний (нагрузка 0) ± 2 °; в течение испытаний (под нагрузкой) плюс 10° выше и минус 20° ниже горизонтали

Испытательное оборудование должно обеспечивать минимальные отклонения

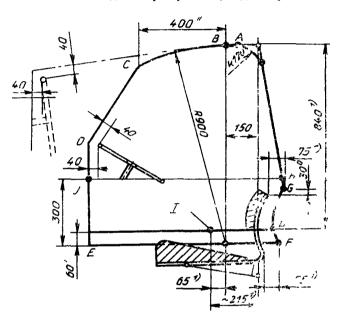
ПРИЛОЖЕНИЕ 3 Обязательное

Измерительное приспособление, соответствующее зоне свободного пространства

Размеры отрезков A_1A_0 и B_1 B_0 должны быть не менее 100 мм; Размеры отрезков A_1A_2 ; B_1B_2 , C_1C_2 ; F_1F_2 ; G_1G_2 ; H_1H_2 ; I_1I_2 ; I_1I_2 должны

быть не менее 500 мм; Размеры отрезков D_1D_2 ; E_1E_2 должны быть не менее 500 мм или не менее диаметра рулевого колеса плюс 40 мм;

Размеры отрезков E_1E_0 ; E_2E_0 должны быть не менее 250 мм или не менее диаметра рулевого колеса плюс 40 мм;


Размеры отрезка J_vE₀ должны быть 300 мм;

Размеры отрезков F_0G_0 ; I_0G_0 ; C_0D_0 ; E_0F_0 зависят от конструкции трактора

ЗОНА СВОБОДНОГО ПРОСТРАНСТВА

1 Зона свободного пространства показана на черт 5 и 6 Согласно чертежам зона свободного пространства определяется относительно вертикальной основной плоскости

Зона свободного пространства, вид сбоку

1) См п 2 настоящего приложения

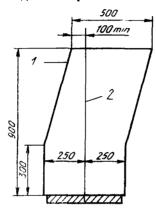
1 - контрольная точка сиденья

Черт 6

Допускается перемещение вертикальной основной плоскости совместно с сиденьем и рулевым колесом в течение нагружения

- 2 При зоне свободного пространства, определенной в п 3 настоящего приложения, допускается регулировка сиденья в пределах ± 75 мм по горизонтали и ± 30 мм по вертикали от среднего положения сиденья Если регулировка сиденья превышает эти значения, то зону свободного пространства следует изменить в соответствии с пп 21 и 22
- 2 1 Если предусмотренная продольная регулировка сиденья в горизонтальной плоскости превышает ± 75 мм от среднего положения, то в этом случае все размеры впереди от контрольной точки сиденья (КТС), определенной по ГОСТ 25791, должны быть уменьшены, а размеры сзади КТС увеличены, исхо-

дя из следующего общая регулировка назад от среднего положения сиденья


минус 75 мм

22 Если предусмотренная вертикальная регулировка сиденья ±30 мм, то в этом случае любой размер на КТС должен быть увеличен, а любой размер ниже КТС — уменьшен, исходя из следующего: общая регулировка выше среднего положения сиденья минус 30 мм.

З Зону свободного пространства (см. приложение 2 и черт. 5-7) определяют по перечислениям a) - k), когда трактор установлен на колесах на горизонтальной поверхности, рудевое колесо, при наличии регулировки, установле-

но в среднее положение для сидящего оператора.

Зона свободного пространства, вид спереди или сзади на расстоянии 65 мм назад от контрольной точки сиденья

I - HAIDYBRA 2 - BEDTHкальная основная плоскость

Черт 7

а) горизонтальная плоскость $(A_1B_1B_2A_2)$,

- б) наклонная плоскость ($G_1G_2I_2I_1$), перпендикулярная вертикальной основной плоскости.
 - в) цилиндрическая поверхность $(A_1A_2I_2I_1)$,

r) цилиндрическая поверхность ($B_1C_1C_2B_2$);

д) наклонная плоскость $(C_1D_1D_2C_2)$, перпендикулярная к вертикальной основной плоскости, соединяющейся с поверхностью по перечислению г), на передлен кромке,

c) вертикальная плоскость ($D_1E_1E_2D_2$), перпендикулярная к вертикальной основной плоскости.

ж) горизонтальная плоскость $(E_1F_1F_2E_2)$;

з) округляющая поверхность, если необходимо $(G_1F_1F_2G_2)$, проходящая от нижней границы плоскости, определенной в перечислении б), на горизонтальную плоскость, определенную в перечислении ж), и идущая параллельно поверхности, проходящей по заданной поверхности спинки сиденья;

и) вертикальные плоскости $(J_1E_1F_1G_1H_1$ и $J_2E_2F_2G_2H_2)$. Расстояние E_1E_2 должно быть равно большему из размеров: диаметр рулевого колеса плюс

40 мм на каждую сторону обода рулевого колеса или 500 мм;

к) параллельные плоскости ($A_1B_1C_1D_1J_1H_1I_1$ и $A_2B_2C_2D_2J_2H_2I_2$), наклоненные так, чтобы герхнее ребро плоскости на стороне, к которой приложена нагрузка, было расположено на расстоянии не менее указанного на черт. 5 в приложении 3

ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ СОПРОТИВЛЕНИЯ ЗАЩИТНОЙ КОНСТРУКЦИИ ХРУПКОМУ РАЗРУШЕНИЮ ПРИ ПОНИЖЕННЫХ ТЕМПЕРАТУРАХ

Изложенные в настоящем приложении требования и методика предназначены для обеспечения прочности и сопротивления хрупкому разрушению при пониженных температурах. Данные минимальные требования должны быть соблюдены при оценке пригодности защитной конструкции для работы при пониженных температурах в тех странах, где требуется эта дополнительная защитах

1. Болты и гайки, применяемые для крепления защитной конструкции к раме машины и соединения установочных элементов защитной конструкции должны соответствовать нормативным жесткостным свойствам.

2. Все сварочные электроды, применяемые при изготовлении конструктивных элементов и арматуры, должны быть совместимы с материалом защитной

конструкции, как указано в п. 3.

3. Жесткостные свойства материала, применяемого для конструктивных элементов защитной конструкции, должны быть проверены на соответствие минимальной поглощенной энергии удара, установленной в таблице, определяемой по методу Шарпи с V-образным надрезом.

Требования минимальной поглощенной энергии удара, определяемой по методу Шарпи с V-образным надрезом на образцах при температуре минус 30 °C. для материала защитной конструкции

Размір образца, мм	Энергия, Дж
10×10	11,0
10×7,5	9,5
10×5	7,5
10×2,5	5,5

 Π римсчание Стальной прокат толщиной менее 2,5 мм и с содержанием углерода менее 0,2 % считается удовлетворяющим данному требованию.

Конструктивные элементы защитной конструкции, изготовленные из материалов, отличающихся от стали, должны иметь эквивалентное сопротивление

удару при низкой температуре.

Образцы должны быть «предельными» и вырезаны из полосового проката трубчатого или коробчатого профиля до гибки или сварки. Образцы из полых и конструкционных профилей должны быть вырезаны из стороны наибольшего размера и не должны содержать сварных швов.

ПРИЛОЖЕНИЕ **6** Обязательное

протокол испытания защитной конструкции

Наименование и адрес изготовителя
Представлено на испытания (кем)
Наименование и тип защитной конструкции
Марка и модель трактора (ов), на котором (ых)
проводилось (лись) испытание (я)
Дата проведения испытаний
Результаты испытаний
Испытания были проведены под нагрузкой слева (справа) сзади (спереди) и справа (слева) сбоку Эталонная масса, применявшаяся для расчета подво-
димой энергии и сжимающего усилия, составляла (кг)
Энергия нагружения:
сзади/спереди, кДж
сбоку, кДж
Сжимающая сила, кН
ди (сзади), кДж
1 Сзади, вперед/назац:
слева, мм
справа, мм
2 Спереди, вперед/назад
слева, мм
справа, мм
3 Сбоку, в сторону спереди, мм сзади, мм 4 Вверх, вверх/вниз
сзади слевамм, спереди слевамм,
справамм справамм
Кривые усилие-перемещение, полученные в ходе испытаний, должны быть включены в протокол
Работа при пониженной температуре (сопротивление хрупкому разруше-

нию)

C 20 **FOCT 12 2.002 2-91**

Размеры, мм

Lсли изготовитель подтверждает, что изготовленная им защитная конструкция подходит для работы при пониженных температурах, следует указать, прозодились ли испытания при температуре минус 18°C или ниже, или кратко описать метод, используемый для определения сопротивления хрупкому разрушению при пониженной температуре

	Спецификация трактора
Ce	ринлый номер
M	асса тракторак
	Спецификация защитной конструкции
2	Фотографии, общии вид и виды, показывающие монтажные элементы Чергеж ссновного взда Характеристики материалов, применяемых в защитной конструкции Основная рама и облицовка Магериал Размеры, мм Опоры Материал
	Размеры, мм Крыша Материал Размеры мм Монтажные и крепежные болты
5	Класс Размеры, мм Другие элементы Материал

ПРИЛОЖЕНИЕ 7 Обязательное

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЗАЩИТНОЙ КОНСТРУКЦИИ

Наименование и адрес изготовителя защитной конструкции	
Наименование и тил защитной конструкции	
Марка и модель трактора (ов), на котором (ых) проводились испытания	
Размеры	
1. Высота расположения элементов крыши над КТС	iM
2. Высота расположения элементов крыши над полом	MМ
3. Внутренняя ширина защитной конструкции на уровне 840 мм над и 215 мм назад от КТСмм	
4. Внутренняя ширина защитной конструкции на уровне центра рулевого ко	ле-
са в точке, расположенной на расстоянии 215 мм назад от КТС	
5. Расстояние от центра рулевого колеса до правой стенки защитной	
конструкции мм	
6. Расстояние от центра рулевого колеса до левой стенки защитной	
конструкции мм	
7. Минимальное расстояние от обода рулевого колеса до защитной констру	K-
циимм	
8. Ширина дверного проемамм	
вверху	
посередине	
внизу	
9. Высота дверного проемамм	
от пола кабины	
от верхней ступеньки	
от нижней ступеньки	
10. Общая высота трактора с защитной конструкцией	ИM
11. Общая ширина защитнои конструкции	4M
 Расстояние по горизонтали от КТС до задней стенки защитной конструкции на высоте 840 мм от контрольной точки сиденья, 	
минус 215 мм	
13. Число дверных проемов	
4. Размеры аварийного люка	

C = 2	2 Γ	OCT	12.2.	002.2	29)	l
-------	------------	-----	-------	-------	----	---	---

15. T	Гип	стекла	
-------	-----	--------	--

16. Марка и модель сиденья

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ПОДГОТОВЛЕН И ВНЕСЕН Государственной комиссией Совета Министров СССР по продовольствию и закупкам

РАЗРАБОТЧИКИ

- В Ф. Шолохов, канд, техн. наук; Г. А. Егоров; А. Д. Енин (руководитель темы); С. И. Буренков; И. М. Илинич, канд. техн. наук; Л. А. Упорина; М. Я Кацман; Ю. Л. Мариенбах, канд. техн. наук; Г. А. Балашова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 30.07.91 № 1310

Настоящий стандарт подготовлен с целью полного введения требований международного стандарта ИСО 5700—89 «Тракторы колесные для сельского и лесного хозяйства. Защитные конструкции.

Метод испытаний при статической нагрузке и условия приемки»

- 3. Срок проверки 1996 г. периодичность проверки 5 лет
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на которын дана ссылка	Номер пункта
ΓΟCT 25791—90	Приложение 4

Редактор В. М. Лысенкина Технический редактор В. Н. Малькова Корректор А. И. Зюбан

Сдано в наб 06 09.91 Подп. к печ. 28.11.91 1,5 усл. п. л. 1,63 усл. кр -отт. 1,38 уч -изд. л. Тираж 410 экз. Цена 32 р. 35 к.