Министерство строительства предприятий тяжелой индустрии СССР Проектный и научно-исследовательский институт "Красноярский промстройниипроект" РЕКОМЕНДАЦИИ Красноярск 1974 Содержание Настоящие Рекомендации содержат основные положения по изготовлению сборных бетонных и железобетонных конструкций, работающих в суровых климатических условиях, к бетону которых предъявляются повышенные требования по морозостойкости. Дополнительно к действующим нормативным документам, приведены требования к материалам для приготовления бетона, составу бетона, назначению режима тепловой обработки, формованию, гидроизоляции и контролю качества бетона. Изложены также некоторые требования по проектированию кровли из сборных железобетонных панелей, которые важны для обеспечения долговечности панелей. Рекомендации разработаны в лаборатории бетона и железобетона института "Красноярский промстройниипроект" кандидатами технических наук А.И. Замощиком, А.Д. Лазаревым и инженером Н.Н. Ковальской. При разработке рекомендаций учтены исследования, проведенные совместно с НИИЖБ, производственный опыт Красноярского домостроительного комбината, опубликованные по данному вопросу материалы СибЗНИИЭП, ЦНИИЭПжилища, МИСИ им. В.В. Куйбышева, ВНИИГ им. Б.Б. Веденеева и других организаций. Рекомендации предназначены для инженерно-технических работников заводов железобетонных изделий и строительных организаций, занятых изготовлением сборного железобетона повышенной морозостойкости. 1. ОБЩИЕ ПОЛОЖЕНИЯ1.1. Настоящие Рекомендации распространяются на изготовление сборных бетонных и железобетонных конструкций, работающих в суровых климатических условиях, к бетону которых предъявляются повышенные требования по морозостойкости (панели, лотки безрулонной кровли для домов серии 111-97 и блоки берегоукрепления). 1.2. При изготовлении изделий следует руководствоваться положениями действующих нормативных документов; СНиП II-8.1-72 "Бетонные и железобетонные конструкций. Норма проектирования"; СНиП I-8.5-69 "Железобетонные изделия. Общие требования"; Указаниями по обеспечению долговечности железобетонных вентиляторных градирен при проектировании и строительстве (СН-254-63); ГОСТ 13015-67 "Изделия железобетонные и бетонные. Общие требования". 2. ТРЕБОВАНИЯ К МАТЕРИАЛАМ ДЛЯ БЕТОНА2.1. Материалы, используемые для получения бетона марки 200 и выше по морозостойкости, должны отвечать требованиям ГОСТ 4797-69 "Бетон гидротехнический. Технические требования к материалам для его приготовления", ГОСТ 8424-72 "Бетон дорожный", а также дополнительным требованиям, приведенным в настоящих Рекомендациях. 2.2. Портландцемент должны соответствовать требованиям ГОСТ 10173-62 "Портландцемент, шлакопортландцемент, пуццолановый портландцемент и их разновидности", иметь марку 400 и выше, нормальную густоту цементного теста не выше 26 проц., содержать до 8 проц., трехкальциевого алюмината и до 0,6 проц. щелочей. 2.3. Мелкий заполнитель (песок кварцевый) должен иметь модуль крупности не ниже 2,2, а содержание в нем пылевидных, илистых и глинистых частиц, определяемых отмучиванием, допускается не более 1,0 проц. 2.4. Природные гравийно-песчаные смеси к применению не допускаются. 2.5. Зерновой состав
смеси крупного заполнителя должен подбираться экспериментально по наибольшей
плотности и объемной массе. При наибольшей крупности заполнителя (щебня) 2.6. Для увеличения морозостойкости бетона следует применять а) пластифицирующие добавки - сульфитно-дрожжевую бражку (СДБ), сульфитно-спиртовую барду (ССБ), водорастворимый полимер (ВРП-1); б) пластифицирующе-воздухововлекающие добавки - мылонафт, омыленную растворимую смолу (ВЛХК-1); этилсиликонат натрия (ГКЖ-10), метилсиликонат натрия (ГКЖ-11); в) воздухововлекающие добавки - смолу нейтрализованную воздухововлекающую (СНВ), синтетическую пластифицирующую добавку (СПД), омыленный древесный пек (ЦНИИПС-1); г) микрогазообразующую добавку - полигидросилоксан (ГКЖ-94); д) комплексные добавки, состоящие из воздухововлекающих и пластифицирующих добавок. Рекомендуемые добавки должны удовлетворять требованиям действующих ГОСТ и ТУ. Характеристики добавок, а также основные показатели их водных растворов, приведены в приложении 1 настоящих Рекомендаций. 3. ПОДБОР СОСТАВА БЕТОНА3.1. Бетонная смесь должна отвечать требованиям ГОСТ 4795-68 "Бетон гидротехнический. Технические требования". 3.2. Водоцементное отношение назначается в зависимости от требуемой марки по морозостойкости. При требуемой морозостойкости 300 циклов и выше водоцементное отношение принимается не более 0,4. 3.3. Расход цемента в бетонной смеси не должен превышать 450 кг/м3. 3.4. Ориентировочное количество добавок, вводимых в бетонную смесь, назначается по табл. 1.
3.5. Количество добавок по табл. 1 уточняется экспериментально так, чтобы содержание воздуха в бетонной смеси после ее уплотнения составляло 3-5 проц. 3.6. Оптимальное время перемешивания и вибрирования следует определять с учетом сохранения в бетонной смеси необходимого количества вовлеченного воздуха. 4. ФОРМОВАНИЕ ИЗДЕЛИЙ4.1. Для обеспечения высокой плотности бетона железобетонные изделия необходимо формовать на виброплощадках. Амплитуда колебаний должна составлять 0,25-0,5 мм. Бетонную смесь при этом рекомендуется уплотнять равномерно по всей площади изделия. 4.2. Степень уплотнения бетонной смеси рекомендуется определять по коэффициенту ее уплотнения и объему вовлеченного в бетонную смесь воздуха - ГОСТ 4799-69 "Бетон гидротехнический. Методы испытания бетонной смеси". 4.3. Формы для изготовления железобетонных изделий должны отвечать требованиям ГОСТ 18886-73 "Формы стальные для изготовления железобетонных и бетонных изделий. Общие технические требования". 4.4. При виброуплотнении бетонной смеси необходимо предусматривать крепление форм к виброплощадке. 5. ТЕПЛОВАЯ ОБРАБОТКА БЕТОНА5.1. Тепловую обработку бетона рекомендуется проводить в камерах пропаривания или в термоформах. 5.2. Пропаривание изделий производится по следующему режиму; а) предварительная выдержка до пропаривания - в пределах 4-5 часов при температуре не выше 30 °С, когда бетон готовится без добавок, и 5,5-7 часов при введении в бетонную смесь пластифицирующих, газообразующих, воздухововлекающих или комплексных добавок; б) температура в камерах или термоформах должна подниматься равномерно, со скоростью не более 20 °С в час; в) изотермическое выдерживание изделий проводится при температуре 70-80 °С до приобретения бетоном прочности не менее 70 проц.; г) время остывания железобетонных изделий назначается в зависимости от их толщины по табл. 2. Таблица 2
5.3. Тепловую обработку изделий с модулем открытой поверхности 6,0 и выше рекомендуется проводить по комбинированному режиму (сухой прогрев и паровой) при относительной влажности среды в период подъема температуры 30-40, а в период изотермического выдерживания - 80-100 проц. 5.4. В зимнее время изделия после распалубки необходимо выдерживать не менее 3 суток в помещении при температуре воздуха не ниже 10 °С. 5.5. В летнее время отпускная прочность бетона должна составлять не менее 70, а в зимнее - не менее 100 проц. проектной марки по прочности на сжатие. 6. ГИДРОИЗОЛЯЦИЯ6.1. Гидроизоляционные покрытия рекомендуется наносить на лицевую поверхность железобетонных изделий на заводе-изготовителе согласно требованиям главы СНиП III-3.13-62 "Отделочные покрытия строительных конструкций. Правила производства и приемки работ" и СНиП III-3.12-69 "Кровля, гидроизоляция и пароизоляция. Правила производства и приемки работ". 6.2. Гидроизоляционный состав рекомендуется наносить на лицевую поверхность не ранее чем через сутки после окончания тепловой обработки. 6.3. В качестве гидроизоляционных покрытий рекомендуется применять составы, приведенные в "Рекомендациях по проектированию и устройству сборных железобетонных и армоцементных крыш безрулонного кровельного ковра для жилых и общественных зданий" (Новосибирск, 1972, изд. СибЗНИИЭП). 7. КОНТРОЛЬ КАЧЕСТВА БЕТОНА7.1. Контроль качества изготовления изделий следует производить в соответствии с ГОСТ 13015-67 "Изделия железобетонные и бетонные. Общие технические требования". 7.2. Качество исходных материалов должно соответствовать требованиям раздела 2 настоящих Рекомендаций. По истечении гарантийного срока хранения добавок необходимо проверять их соответствие всем показателям действующих ГОСТ и ТУ. 7.3. Особенности контроля за приготовлением бетонной смеси и изготовлением изделий из нее заключаются в систематической проверке: а) плотности раствора добавок рабочей концентрации после приготовления новой порции раствора в каждой емкости; б) точности дозирования материалов и добавок; в) соответствия подвижности (жесткости) и объемной массы смеси с пластифицирующе-воздухововлекающими добавками заданным (не реже двух раз в смену); г) соответствия времени перемешивания бетонной смеси, особенно с пластифицирующе-воздухововлекающими добавками, заданному; д) содержания воздуха в бетонной смеси; е) режима уплотнения и твердения бетона. 7.4. Составы бетона следует заблаговременно проверить на прочность, водонепроницаемость и морозостойкость. Контроль прочности бетона необходимо осуществлять по ГОСТ 18105-72 "Бетоны. Контроль и оценка однородности и прочности". Морозостойкость контролируется путем проверки соответствия материалов, состава бетона, содержания воздуха и технологии, принятым при подборе состава бетона, а также испытывается на специально изготовленных контрольных образцах в соответствии с ГОСТ 10060-62 "Бетон тяжелый. Метод определения морозостойкости". Морозостойкость и водонепроницаемость бетона определяются периодически, не реже одного раза в 6 месяцев. Приложение 1ХАРАКТЕРИСТИКИ ДОБАВОК И ОСНОВНЫЕ ПОКАЗАТЕЛИ ИХ ВОДНЫХ РАСТВОРОВСульфитно-дрожжевая бражка - продукт переработки сульфитно-спиртовой барды. Изготовляется в вице жидких (КДЖ) и твердых (КТД) концентратов бражки с содержанием сухих веществ не менее 50 и 76 проц. соответственно, которые должны отвечать требованиям МРТУ 13-04-66 Министерства целлюлозно-бумажной промышленности СССР "Концентраты сульфитно-дрожжевой бражки". КДЖ поставляется в железнодорожных цистернах и хранится в условиях, исключающих его увлажнение, КТД поставляется в бумажных мешках, которые следует хранить в закрытых проветриваемых помещениях, располагая мешки в один ряд по вертикали, завязкой вверх. Стоимость 1 т сухого вещества 15-45 руб. Основные показатели раствора приведены в табл. 3.
Мылонафт - натриевые соли нерастворимых в воде органических кислот. Должен соответствовать требованиям ГОСТ 13202-67 "Кислоты нефтяные", Поставляется нефтеперерабатывающими комбинатами в виде пастообразного продукта в металлических или деревянных бочках. Хранится в закрытых складских помещениях. Стоимость 1 т 60 руб. Основные показатели раствора приведены в табл. 4. Таблица 4
Пластификатор ВЛХК-1 - продукт омыления щелочью растворимой смолы. Должен соответствовать требованиям ТУ Министерства целлюлозно-бумажной промышленности СССР "Пластификатор ВЛХК-1". Изготовляется Ветлужским лесохимическим комбинатом в виде пастообразного продукта и поставляется в металлических бочках. Хранится в закрытой таре в складском помещении, Стоимость 1 т сухого вещества 60-70 руб. Основные показатели раствора приведены в табл. 5. Кремнийорганические жидкости ГКЖ-10 и ГКЖ-11 - водоспиртовые растворы этил- (ГКЖ-10) или метилсиликоната натрия (ГКЖ-11) с содержанием основного вещества 30±5 проц. Должны соответствовать требованию МРТУ 6-02-271-63 Министерства химической промышленности СССР "Технические условия на жидкости ГКЖ-10 и ГКЖ-11". Поставляются в металлической таре, хранятся при температурах от 0 до 30 °С. Гарантийный срок хранения 6 месяцев. 1 т жидкостей стоит 633-700 руб. Основные показатели раствора приведены в табл. 6. Таблица 5
Таблица 6
Кремнийорганическая жидкость ГКЖ-94 - полимер этилгидросилоксана, образующийся при гидролизе этилдихлорсилана. Должна соответствовать требованиям ГОСТ 10834-64 "Жидкость гидрофобизирующая ГКЖ-94". Изготовляется предприятиями химической промышленности. Поставляется в герметизированной таре емкостью 5-20 л. Хранится при температуре от 0 до 20 °С. Гарантийный срок хранения 1 год. ГКЖ-94, поставляемую в виде водной эмульсии 50-процентной концентрации, допускается хранить в течение 2 месяцев при температуре не выше 20 °С. Стоимость 1 т добавки 4800 руб. Смола нейтрализованная воздухововлекающая (СНВ) - абиетиновая смола, омыленная каустической содой. Должна соответствовать требованиям ТУ 81-05-75-69 Министерства целлюлозно-бумажной промышленности СССР "Смола нейтрализованная воздухововлекающая (СНВ)". Изготовляется Тихвинским лесохимическим и Волгоградским канифольным заводами в виде твердого продукта. Поставляется в деревянных бочках. Хранится в закрытых помещениях, исключающих увлажнение продукта. Стоимость 1 т добавки 1600 руб. Основные показатели раствора приведены в табл. 7. Таблица 7
Синтетическая пластифицирующая добавка (СПД) - водный раствор смеси натриевых солей высших жирных и алкилнафтеновых кислот, водорастворимых кислот и неомыляемых веществ с содержанием сухих веществ не менее 40 проц. Должна соответствовать требованиям ТУ 38 101253-73 Министерства нефтеперерабатывающей и нефтехимической промышленности СССР "Синтетическая поверхностно-активная добавка "СПД" к бетонам и строительным растворам". Доставляется в железнодорожных цистернах и хранится в емкостях, защищенных от попадания осадков, при температуре не ниже точки замерзания продукта. Гарантийный срок хранения 2 года. Стоимость 1 т сухого вещества 220 руб. Основные показатели раствора приведены в табл. 8.
Омыленный древесный пек (ЦНИИПС-1) - нейтрализованные едким натрием жирные кислоты древесного пека. Должен соответствовать требованиям ТУ 81-05-16-71 Министерства целлюлозно-бумажной промышленности СССР "Пластификатор древесно-пековый строительный ЦНИИПС-1". Изготовляется Ветлужским и Сявским лесохимическими комбинатами в виде пастообразного продукта. Поставляется в бумажных пакетах или мешках. Хранится в крытом помещении. Гарантийный срок хранения 4 месяца. Стоимость 1 т 55 руб. Основные показатели раствора приведены в табл. 9. Таблица 9
Водорастворимый полимер ВРП-1 - натриевая соль сополимера салициловой кислоты с формальдегидом. Должен соответствовать требованиям ВСН-66 Министерства строительства Узбекской ССР. Изготавливается Ферганским заводом фурановых соединений. Твердый продукт упаковывается в пятислойные бумажные мешки с полиэтиленовой прослойкой, концентрированный раствор поставляется в металлических бочках. Хранится в крытых складских помещениях, защищенных от попадания в него влаги, Срок хранения не ограничен. Основные показатели раствора приведены в табл. 10.
Приложение 2МЕТОДИКА ПРИГОТОВЛЕНИЯ И КОНТРОЛЯ КАЧЕСТВА ВОДНОЙ ЭМУЛЬСИИ ГКЖ-94Водная 10-процентная эмульсия нерастворимой в воде кремнийорганической жидкости ГКЖ-94 готовится следующим образом. К отмеренному объему холодной воды добавляется желатин из расчета получения 1-процентного раствора. Раствор подогревается до температуры 60-70 °С, которая поддерживается пока желатин не растворится полностью, а затем охлаждается по комнатной температуры. Охлажденный раствор желатина помешается в быстроходный смеситель (желательно с числом оборотов в минуту 8000-10000), смеситель включается и в него вливается жидкость ГКЖ-94 100-процентной концентрации. Соотношение жидкости к раствору желатина принимается 1:9. Для получения стабильной однородной эмульсии рекомендуется пропускать продукт через эмульгатор не менее 5 раз. Однородность эмульсии и отсутствие в ней механических примесей определяется при помощи фильтрования под вакуумом через матерчатый фильтр воронки Бюхнера. После фильтрования на фильтре не должно оставаться посторонних включений. Для определения
стабильности эмульсии в мерный цилиндр наливается Приготовленная эмульсия может хранится при температуре не выше 20 °С в течение 2 месяцев. Приложение 3ПРИГОТОВЛЕНИЕ ВОДНЫХ РАСТВОРОВ ДОБАВОК1. Для правильного дозирования и равномерного распределения пластифицирующие и воздухововлекающие добавки следует вводить в состав бетонной смеси в виде водного раствора рабочей концентрации. Рабочий раствор приготовляется смешиванием концентрированных растворов добавок с водой до введения в бетономешалку. Соотношение между растворами и водой устанавливается при подборе состава бетона. 2. Растворы добавок рабочей и повышенной концентрации готовятся в емкостях путем растворения и последующего разбавления твердых, пастообразных и жидких продуктов. Для повышения скорости растворения рекомендуется подогревать воду до температуры 40-70 °С и перемешивать растворы сжатым воздухом или острым паром. Твердые продукты при необходимости следует предварительно дробить. 3. После полного растворения продукта плотность полученного раствора проверяется ареометром и доводится до заданной добавлением продукта или воды. Количество продукта, необходимое для получения раствора добавки рабочей или повышенной концентрации, устанавливается по табл. 11 настоящего приложения, а их плотность - по табл. 3-10 приложения 1. Таблица 11
4. Концентрированные растворы перед приготовлением рабочего раствора, а последний перед подачей в бетоносмеситель, необходимо тщательно перемешать - использование раствора, имеющего осадок нерастворившихся компонентов не допускается. Так как после продолжительного хранения возможно испарение воды из раствора, его плотность следует контролировать повторно. Приложение 4ПРИМЕРЫ КОРРЕКТИРОВКИ СОСТАВА БЕТОНА С ДОБАВКАМИ, ПОВЫШАЮЩИМИ ЕГО МОРОЗОСТОЙКОСТЬ1. Требуется подобрать
состав бетона марки 300 на портландцементе. Осадка конуса 2-2,5 см,
требуемая марка по морозостойкости 300. В качестве добавки, повышающей
морозостойкость бетона, выбрана воздухововлекающая добавка СПД. На портландцемента марки песка, кг - 560 щебня, кг - 1220 воды, л - 180 В соответствии с указаниями п. 3.4. Рекомендаций берем 0,02 проц. (от массы цемента) СПД. Плотность раствора 5-процентной концентрации равна 1,009 (табл. 8 приложения 1). Тогда в расчете на сухое вещество количество добавки составит (в кг) Необходимое количество концентрированного раствора составит (в л): Таким образом, для
приготовления 2. Требуется подобрать
состав бетона марки 200. Осадка конуса На портландцемента марки песка, кг - 610 щебня, кг - 1315 воды, л - 170 В соответствии с указаниями п. 3.4. Рекомендаций при введении добавки СДБ расход цемента можно уменьшить на 6-8 проц. При этом количество добавки должно находиться в пределах 0,1-0,2 проц., (табл. 1); выбираем количество добавки СДБ, равное 0,2 проц. от массы цемента, Корректировка состава бетона с пластифицирующей добавкой должна производиться при неизменных водоцементном отношении (170:340 = 0,5) и доле песка в смеси заполнителей (610:1316 = 0,46). Тогда расход материалов составит: цемента, кг 340 - 340·0,08 = 312,8; воды, л 312,8·0,5 = 156,4; песка, кг 610 + (27,2 + 13,6)·0,46 = 629; щебня, кг 1315 + (27,2 + 13,6)·0,54 = 1337; СДБ (сухого), кг 312,8·0,002 = 0,63. В С учетом объема воды, содержащейся в 12-процентном растворе СДБ, для затворения бетонной смеси воды требуется (в л) 156,4 - (5·1,053 - 0,63) = 151,9. 3. Требуется подобрать
состав бетона марки 300. Осадка конуса На портландцемента марки песка, кг - 575 щебня, кг - 1400 воды, л - 175 В соответствии
с указаниями п. 3.4.
Рекомендаций выбираем количество добавки СДБ, равное 0,2 проц., и ГКЖ-94,
равное 0,05 проц. от массы цемента. Плотность раствора СДБ 1,053; в В расчете на сухое вещество потребуется (в кг) Необходимое количество раствора СДБ составит (в л) Раствор ГКЖ-94 готовится
в виде 50-процентной эмульсии, поэтому на Таким образом, для
приготовления раствора комплексной добавки (6,67 + 0,420) = 7,09, воды (175 - 7,09) = 167,9 Приложение 5ПОВЫШЕНИЕ ДОЛГОВЕЧНОСТИ КОНСТРУКЦИЙ КРОВЛИ ПРИ ПРОЕКТИРОВАНИИ1. Опыт экспериментального применения сборных безрулонных крыш для жилых зданий показывает, что во время эксплуатации в некоторых панелях появляются трещины. Они, способствуя проникновению влаги в бетон, вызывают дальнейшее развитие процесса трещинообразования, особенно в суровых климатических условиях. Основные причины появления трещин - непрерывные температурные деформации элементов панелей и увлажнение бетона в процессе эксплуатации. В ранее изданных рекомендациях по проектированию панелей не предусмотрен их расчет на колебания температуры наружного воздуха. Максимальные амплитуды суточных колебаний температуры воздуха в Красноярске составляют: в январе - 26,5, феврале - 27,8, марте - 25,4, ноябре - 24,4 и декабре - 25,5 °С (СНиП II-А.6-72. "Строительная климатология и геофизика"). Колебание температуры панелей кровли достигает еще больших величин в связи с влиянием на них солнечной радиации. 2. При снижении температуры наружного воздуха элементы панели кровли остывают неравномерно по толщине и с разной скоростью; температура плит уменьшается быстрее, чем температура более массивных ребер. Это вызывает растягивающие напряжения в плитах и сжимающие в ребрах. При повышении температуры наружного воздуха напряжения в элементах панели меняются на обратные. Как видно, температурные воздействия являются основными в процессе эксплуатации кровли, поэтому железобетонные панели должны рассчитываться на прочность, жесткость и трещиностойкость под действием постоянных и временных нагрузок и переменной температуры. Методика приближенного расчета температур в кровельной панели приведена в приложении 6, а определение деформаций бетона при колебаниях наружной температуры в приложении 7. 3. Температурные деформации бетона зависят от его влажности. Замораживание бетона в водонасыщенном состоянии уменьшает его долговечность. Поэтому должны приниматься меры, предотвращающие увлажнение сборных конструкций. С этой целью при проектировании безрулонных крыш необходимо предусматривать; а) стяжку по слою насыпного утеплителя, уменьшающую образование конденсата и инея на панелях безрулонной кровли, а также теплопотери здания, особенно при вентилируемом чердачном пространстве. Стяжка должна устраиваться в жилых зданиях по СН-51-64 "Указания по проектированию бесчердачных крыш жилых и общественных зданий"; б) вентиляцию чердачного пространства для уменьшения влажности воздуха и разницы с температурой наружного воздуха, 4. Ребра панели крыши, выступающие в наружную сторону, для уменьшения деформаций растяжения бетона, должны иметь такие размеры, чтобы скорости охлаждения ребер и плиты были одинаковые. Это условие приближенно выполняется при ширине ребер, составляющей 1,8-2,2 толщины плиты. 5. Для уменьшения растяжения плит количество ребер у кровельной панели, выступающих в сторону чердака, должно быть минимальным. Ребра должны иметь, возможно, меньшие высоту и площадь поперечного сечения. 6. При расчете прочности и трещиностойкости плит должны учитываться нагрузки и температурные воздействия (общие деформации растяжения в плите при изменении температуры среды не должны превышать предельной растяжимости бетона). Кроме того, напряжения в бетоне от растянутой арматуры по условиям морозостойкости не должны превышать 0,3 прочности бетона к моменту передачи на него напряжений. Приложение 6РАСЧЕТ ТЕМПЕРАТУР КОНСТРУКЦИЙ БЕЗРУЛОННОЙ КРОВЛИ1. Температура в элементах панели определяется по приближенным формулам, полученным из известных решений при дополнительных упрощающих предпосылках: - между плитой и окружающим воздухом происходит конвективный теплообмен с постоянным коэффициентом, равным 20 ккал/м2·ч·град.; - смена максимальных температур на минимальные происходит в течение 12 часов, при этом температура изменяется равномерно, со скоростью Δt/12 град/ч., где Δt - максимальная суточная амплитуда колебаний температуры наружного воздуха, определяемая по СНиП II-А.6-72; - теплотехнические характеристики бетона постоянны: коэффициент теплопроводности 1,7 ккал/м·ч·град. и коэффициент температуропроводности 3·10-3, м2/ч.; - температура воздуха чердачного пространства определяется экспериментально и принимается постоянной в течение 12 часов, когда происходит изменение наружной температуры. 2. Для расчета выделяются два характерных элемента панели: плита, расположенная над чердачным перекрытием, и ребра, выступающие в наружную или во внутреннюю сторону от плиты. 8. Температура поверхности плиты через 12 часов изменения температуры наружного воздуха со стороны чердака с наружной стороны
Средняя температура по высоте плиты В приведенных выражениях Вi = 11,75h - критерий Еио;
h - толщина плиты, м; Δt - максимальная суточная амплитуда колебаний температуры наружного воздуха; t0 = 0,5(tв + tн) - начальная температура плиты; tв, tн - внутренняя и наружная температуры воздуха. Изменение средней температуры плиты за 12 часов
4. Температура поверхности ребра, боковые стороны которого расположены в среде с одинаковой температурой
Средняя температура по сечению ребра Изменение средней температуры ребра определяется так же, как и плиты по формуле (4). 5. Более точно температуры в плите можно определить теплотехническим расчетом, 6. Для примера рассчитаны температуры основной кровельной панели КПГ-30-1. для безрулонной крыши домов серии 111-97 в Красноярске. Максимальная амплитуда суточных колебаний температуры наружного воздуха (Δt) в феврале по СНиП II-A.6-72, табл. 2 равна 27,8 °С. Температура наружного воздуха (tн) принята равной среднемесячной минус 14,7 °С (СНиП II-А.6-72, Табл. l), а температура чердачного пространства (tв) минус 10 °С. Схема панели приведена на рис. 1. Температура в элементах
панели толщиной Рис. 1. Кровельная панель КПГ-30-1 серии 111-97 Для первого участка;
температура внутренней поверхности плиты со стороны чердака (tn1) определяется по формуле (1), а с наружной стороны (tn2) - по формуле (2); средняя температура плиты Для второго участка;
температура поверхности плиты (tn) определяется по формуле (5), средняя температура по сечению плиты Аналогично по формулам (5, 6 и 4) определяются температуры крайнего и среднего ребер, выступающих в наружную сторону, и ребра со стороны чердака. Результаты расчетов приведены в табл. 12.
Приложение 7РАСЧЕТ ТЕМПЕРАТУРНЫХ ДЕФОРМАЦИЙ КОНСТРУКЦИЙ БЕЗРУЛОННОЙ КРОВЛИ1. Общие деформации растяжения бетона вызываются неравномерным распределением температуры по отдельным элементам конструкции (плите, ребрам) и по сечению самого элемента. Максимальное растяжение бетона должно быть меньше предельной растяжимости с учетом предварительного сжатия напряженной арматурой εк = εт ≤ εпр + εн, (7) где εк - относительные температурные деформации бетона, вызванные неравномерным распределением температуры в отдельных частях конструкции (разницей между изменением средних температур плиты и ребра); εт - относительные температурные деформации бетона, вызванные неравномерным распределением температуры по сечению рассматриваемого элемента; εн - относительные деформации сжатия бетона от действия преднапряженной арматуры; εпр = 15·10-5 - предельная растяжимость бетона. 2. Деформации от неравномерной температуры в отдельных частях конструкции в плите в ребре
где α = 1·10-5 1/град - коэффициент температурного расширения бетона; Δtn, Δtр - изменения средней температуры по сечению плиты и ребра соответственно, определяемые теплотехнический расчетом или (приближенно) по табл. 12 приложения 6. Fn ≈ впhn(1 + nμn) - приведенная площадь поперечного сечения части плиты, примыкающей к ребру, длиной 5 толщин плиты; Fp = вphp(1 + nμp) - приведенная площадь поперечного сечения ребра; e - расстояние между линиями центров тяжести плиты и ребра (рис. 2); у - расстояние от линии центра тяжести ребра до рассматриваемой точки; r - радиус инерции сечения ребра; μ - коэффициент армирования; п - отношение модулей упругости стали и бетона. Рис. 2. Схема сечения тонкостенного сборного элемента безрулонной кровли 3. Деформации бетона от неравномерной температуры по высоте сечения элемента εт = α·(t - где t, 4. Если общие деформации бетона больше допускаемых, необходимо при проектировании предусмотреть такие меры по увеличению долговечности крыши, чтобы выполнялось условие (7). Ими могут быть: а) изменение размеров элементов сборной панели; б) изменение температуры чердачного пространства за счет вентиляции, стяжки по слою насыпного утеплителя на чердачном перекрытии, увеличения теплоизоляции и т.д. 5. Для примера подсчитаны температурные деформации кровельной панели КПГ-30-1 для безрулонной крыши домов серии 111-97. Расчет температур для этой панели приведен в приложении 6. Для расчета температурных деформаций выделяются два характерных участка панели (см. приложение 6). На каждом участке определяются максимальные растягивающие деформации в продольном и поперечной направлениях в плите и в ребрах. Определение поперечных деформаций плиты на первом участке а) От неравномерного остывания плита и ребра, выступающего в сторону чердачного перекрытия: уменьшение средней температуры плиты Δtn = - 12,85 °С, ребра Δtр = 0 (см. приложение 6); приведенная площадь поперечного сечения ребра размером 10×20 см и коэффициентом армирования 0,02 Fp = 20·10(1 + 7·0,02) = 228 см2; приведенная площадь поперечного сечения плиты с коэффициентом армирования 0,01 Fn = 4·[4·(5 + 5) + 12] (1 + 7·0,01) = 222 см2; относительные деформации растяжения плиты по формуле (8) б) От неравномерной температуры по высоте плиты по формуле (10) εт = 1·10-5[-27,45 - (-25,2)] = -2,25·10-5. В этой формуле
температура наружной поверхности t =
-27,45 °С и средняя температура плиты Таким образом, общие максимальные деформации плиты на первом участке в поперечном направлении равны (6,5 + 2,25)·10-5 < 15·10-5, т.е. они меньше предельных допускаемых. Аналогично определяются деформации растяжения для других случаев. Результаты расчета приведены на рис. 3. Как видно, трещины во время эксплуатации кровли в первую очередь могут образоваться в плите в зоне консольного участка в продольном направлении и в ребрах, выступающих в сторону чердака. Для уменьшения вероятности появления трещин необходимо предусмотреть в проекте стяжку по слою насыпного утеплителя, чтобы температура чердачного пространства меньше отставала от изменения температуры наружного воздуха. В предельном случае, когда температуры чердачного пространства и наружного воздуха равны, максимальные деформации плиты резко уменьшают. Например, на первом участке в поперечном направлении вместо (6,5+2,25)·10-5 получим (0,5+0,2)·10-5. Рис .3. Растяжение бетона в панели безрулонной кровли при снижении температуры наружного воздуха. Деформации увеличены в 105 раз.
|