ИЗОЛЯЦИЯ ТЕПЛОВЫХ СЕТЕЙ В настоящее время для изоляции тепловых сетей наиболее часто применяются минеральная вата, пенополиуретан (ППУ), пенополиэтилен и другие вспененные полимерные теплоизоляционные материалы и штучные изделия из легких бетонов. Минераловатные утеплители обладают низкой теплопроводностью в сухом состоянии. Но из-за нарушений условий транспортировки, хранения на стройплощадке, монтажа в условиях повышенной влажности, неаккуратного крепления, повреждения парозащитной пленки минеральная вата теряет свои теплозащитные свойства, деформируется, оседает, что приводит к необходимости ремонта и замены теплоизоляционного материала. Кроме того, ни одна из минеральных ват, в то числе базальтовая вата, не годятся для утепления труб с температурой теплоносителя выше 250°С, так как происходит разложение пропитывающего состава. Применяемая изоляция из ППУ, в основном, пригодна при температуре теплоносителя до 150°С. При повреждении гидрозащиты и попадания воды ППУ разлагается. Штучные теплоизоляционные материалы, способные обеспечивать надежную тепловую защиту трубопроводов длительное время и обладающие необходимой термостойкостью, изготавливаются в виде скорлуп из перлитобетона, пеностекла и других неорганических материалов, имеют достаточно высокую стоимость и требуют изготовления в заводских условиях. К более дешевым теплоизоляционным материалам относится неавтоклавный монолитный пенобетон естественного твердения - разновидность легкого ячеистого бетона, получаемого в результате твердения раствора, состоящего из цемента, воды и поверхностно-активного вещества, или просто - пены. Пена обеспечивает необходимое содержание воздуха в растворе и его равномерное распределение по всей массе в виде мелких замкнутых ячеек, что придает материалу теплоизоляционные свойства и влагостойкость. Пенобетон обладает высокой адгезией к металлу и надежно защищает металл от наружной коррозии. Коэффициент линейного расширения пенобетона сопоставим с коэффициентом линейного расширения стальной трубы. Пенобетон можно применять для теплоизоляции трубопроводов, оборудования, газоходов и воздуховодов, расположенных как в зданиях, так и на открытом воздухе в непроходных каналах и при бесканальной прокладке с температурой теплоносителя от минус 150°С до плюс 600°С, в том числе трубопроводов тепловых сетей при новом строительстве и ремонтных работах. При повреждении гидрозащиты пенобетон может набрать до 22-25% воды, которая впоследствии испаряется. При этом пенобетон, вследствие реакции гидратации, становится прочнее и сохраняет свои теплозащитные свойства. Технология монолитного неавтоклавного пенобетона предполагает использование мобильных комплексов, позволяющих производить непосредственно на объекте теплоизоляционный пенобетон средней плотностью 150 - 200 кг/м3 с заливкой его в межтрубное пространство с последующим твердением в естественных условиях и формированием на поверхности трубопровода долговечного, термостойкого теплоизоляционного слоя. Установка для производства пенобетона состоит из: низкооборотного, исключающего разбивание пены, смесителя цикличного действия, пеногенератора для производства пены, компрессора и героторного насоса, обеспечивающего плавную подачу пенобетона с минимальным разрушением воздушных пузырьков. Работу можно производить в зимний период при отрицательных температурах до -15°С. При этом нужно обеспечить положительную температуру пенобетона в течение первых 4-5 часов. Это достигается использованием при замесе горячей воды и утеплением места заливки. Стоимость утепления труб монолитным пенобетоном значительно меньше, чем утепление минеральной ватой или пенополиуретаном. Технология производства работ Участки трубопровода очищаются от ржавчины, пыли, грязи, масляных пятен и остатков изоляции при ремонтных работах (рис. 1).
Рис. 1 Участок трубопровода Расчетная толщина пенобетонного слоя создается при помощи центраторов (рис. 2) из полимерных материалов (при температуре теплоносителя не выше 120°С) или оцинкованной стали, устанавливаемых на изолируемых трубах из расчета 1 центратор на 1 кожух (оболочку).
Рис. 2 Центратор На начальных и конечных участках трубопровода устанавливаются центраторы-заглушки (рис. 3). Кроме того, заглушки устанавливаются по длине трубопровода так, чтобы объем ограниченного участка соответствовал объему смесителя.
Рис. 3 Центратор-заглушка На центраторы с помощью саморезов устанавливается кожух (оболочка) из оцинкованной стали или алюминия таким образом, чтобы заливочное отверстие располагалось вверху, строго по центру трубы (рис. 4). Заливочные отверстия, в дальнейшем, заделываются гидроизолирующим, но паропроницаемым материалом, с целью удаления избытка влаги из пенобетона.
Рис. 4 Металлический кожух (оболочка) с заливочными отверстиями. Заливка пенобетона производится в 2 этапа. Первоначально заполняется небольшой объем ограниченного заглушками участка для контроля возможного протекания пенобетонной смеси в местах стыков кожуха с неподвижными опорами. Места протекания заделываются монтажной пеной. Контроль заполнения пространства между трубопроводом и металлическим кожухом (оболочкой) осуществляется визуально через заливочные отверстия. Аналогично заполняются вертикальные участки трубопровода (рис. 5).
Рис. 5 Вертикальный участок, подготовленный к заливке пенобетона. Заливку на действующем трубопроводе необходимо производить при температуре теплоносителя не более 60°С. Если температура выше 60°С, необходимо снизить температуру до указанной на время твердения пенобетона (12-24 часа). Толщина пенобетонного слоя зависит от температуры теплоносителя, температурной зоны (для наружных трубопроводов) и диаметра изолируемого трубопровода. Учитывая, что единица измерения изоляции трубопровода в нормах и расценках принята 1 м3 изоляции, а в расчетах часто оперируют диаметром трубопровода и его длиной, ниже приводится таблица соотношений 1 м3 изоляции с длиной изолируемого трубопровода. Таблица разработана для изоляции наружных трубопроводов в III температурной зоне пенобетоном плотностью 200 кг/м3 при 4-х температурах теплоносителя.
Журнал «Ценообразование и сметное нормирование в строительстве», ноябрь 2009 г. № 11
|