МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДНЫХ
КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ
Методика допущена для целей государственного экологического контроля.
Москва 1996 г. (издание 2004 г.)
В соответствии с требованиями ГОСТ Р ИСО 5725-1-2002 - ГОСТ Р ИСО 5725-6-2002 и на основании свидетельства о метрологической аттестации № 224.01.03.021/2004 в МВИ внесены изменения (Протокол № 1 заседания НТС ФГУ «ФЦАМ» МПР России от 03.03.2004).
ОБЛАСТЬ ПРИМЕНЕНИЯНастоящий документ устанавливает методику количественного химического анализа проб сточных вод для определения в них ионов никеля при массовой концентрации от 0,08 до 4,0 мг/дм3 фотометрическим методом с диметилглиоксимом. Если массовая концентрация ионов никеля в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы таким образом, чтобы концентрация ионов никеля соответствовала регламентированному диапазону. Мешающие влияния, обусловленные присутствием в пробе цианидов, роданидов, большого количества органических веществ, а также меди, железа, кобальта, хрома, марганца, устраняются специальной подготовкой пробы к анализу (п. 10). 1. ПРИНЦИП МЕТОДАФотометрический метод определения массовой концентрации ионов никеля основан на взаимодействии ионов никеля в слабоаммиачной среде в присутствии сильного окислителя с диметилглиоксимом с образованием комплексного соединения красного цвета. Максимум светопоглощения соответствует длине волны λ = 445 нм. 2. ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХНастоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1. Значения показателей точности, повторяемости и воспроизводимости методики
Значения показателя точности методики используют при: - оформлении результатов анализа, выдаваемых лабораторией; - оценке деятельности лабораторий на качество проведения испытаний, - оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории. 3. СРЕДСТВА ИЗМЕРЕНИЙ. ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ. МАТЕРИАЛЫ, РЕАКТИВЫ3.1. Средства измерений, вспомогательное оборудование Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны λ = 445 нм. Кюветы с толщиной поглощающего слоя 10 и 50 мм. Весы лабораторные 2-го класса точности по ГОСТ 24104. Сушильный шкаф электрический, ОСТ 16.0.801.397. Плитка электрическая по ГОСТ 14919. ГСО с аттестованным содержанием никеля с погрешностью не более 1 %. 3.2. Посуда Колбы мерные 2-25 (50, 100)-2 по ГОСТ 1770. Пипетки мерные 6(7)-1(2, 5, 10) по ГОСТ 29227 Воронки делительные ВД-1-250 ХС по ГОСТ 25336. Колбы конические К-2-100(200)-34 ТХС по ГОСТ 25336. Стаканы для взвешивания Н-1-50 ТХС по ГОСТ 25336. Чашки фарфоровые выпарительные 3(4) по ГОСТ 9147. Бутыли из стекла или полиэтилена с притертыми или винтовыми пробками вместимостью 250 - 500 см3 для отбора и хранения проб. 3.3. Реактивы, материалы Аммиак водный по ГОСТ 3760. Диметилглиоксим по ГОСТ 5828. Перекись водорода (30 %-ный водный раствор) по ГОСТ 10929. Спирт этиловый ректификованный технический по ГОСТ 18300. Серная кислота по ГОСТ 4204. Азотная кислота по ГОСТ 4461. Соляная кислота по ГОСТ 3118. Калий-натрий виннокислый, (сегнетова соль) по ГОСТ 5845. Аммония персульфат по ГОСТ 20478. Хлороформ ТУ 6-09-06-800 (перегнанный). Гидроксиламина гидрохлорид по ГОСТ 5456. Метиловый оранжевый индикатор по ГОСТ 10816. Бром по ГОСТ 4109. Натрий гидроксид по ГОСТ 4328. Вода дистиллированная по ГОСТ 6709. Бумага индикаторная универсальная, ТУ 6-09 1181. Все реактивы должны быть квалификации ч.д.а. или х.ч. 4. УСЛОВИЯ БЕЗОПАСНОГО ПРОВЕДЕНИЯ РАБОТ4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007. 4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019. 4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004. 4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. 5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВВыполнение измерений может производить химик-аналитик, владеющий техникой экстракционно-фотометрического анализа и изучивший инструкции по эксплуатации спектрофотометра или фотоколориметра. 6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙИзмерения проводятся в следующих условиях: температура окружающего воздуха (20 ± 5) °C; атмосферное давление (84,0 - 106,7) кПа (630 - 800 мм рт. ст.); относительная влажность (80 ± 5) %; напряжение сети (220 ± 10) В; частота переменного тока (50 ± 1) Гц. 7. ОТБОР И ХРАНЕНИЕ ПРОБ ВОДЫОтбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб». 7.1. Пробы воды отбирают в стеклянные или полиэтиленовые бутыли, предварительно ополоснутые отбираемой водой. Объём отобранной пробы должен быть не менее 150 см3. 7.2. Пробы анализируют в день отбора или консервируют добавлением 5 см3 концентрированной азотной кислоты на 1 дм3 пробы (нельзя консервировать при наличии цианидов). Если требуется отдельно определить никель в растворимой и нерастворимой формах, часть пробы фильтруют (до консервации), в ней определяют растворенную форму. 7.3. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указываются: цель анализа, предполагаемые загрязнители; место и время отбора; номер пробы; должность, фамилия отбирающего пробу, дата. 8. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ8.1. Подготовка прибора Подготовку спектрофотометра или фотоэлектроколориметра проводят в соответствии с руководством по его эксплуатации. 8.2. Приготовление вспомогательных растворов 8.2.1. Приготовление насыщенного водного раствора брома (бромной воды). 2,5 см3 брома растворяют в 100 см3 дистиллированной воды. Под слоем воды всегда должен находиться жидкий бром. Раствор хранят в темной склянке. 8.2.2. Приготовление 1 %-ного спиртового раствора диметилглиоксима. Навеску 1 г диметилглиоксима помещают в коническую колбу и растворяют в 99 г этилового спирта. 8.2.3. Приготовление 3 %-ного раствора пероксида водорода. 5 см3 30 %-ной пероксида водорода помещают в мерную колбу вместимостью 50 см3 и доводят до метки дистиллированной водой. 8.2.4. Приготовление 20 %-ного раствора калия-натрия виннокислого. Навеску 20 г калия-натрия виннокислого помещают в коническую колбу и растворяют в 80 см3 дистиллированной воды. 8.2.5. Приготовление 10 %-ного раствора гидрохлорида гидроксиламина. Навеску 10 г гидрохлорида гидроксиламина помещают в коническую колбу и растворяют в 90 см3 дистиллированной воды. 8.2.6. Приготовление раствора соляной кислоты. 42,5 см3 концентрированной соляной кислоты растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см3 и доводят до метки дистиллированной водой. 8.3. Приготовление растворов ионов никеля 8.3.1. Приготовление основного раствора. Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией. В 1 см3 раствора должно содержаться 0,01 мг никеля. Раствор готовят в день проведения анализа. 8.3.2. Приготовление рабочего раствора. 10 см3 основного раствора помещают в мерную колбу вместимостью 50 см3 и доводят до метки дистиллированной водой. 1 см3 раствора должен содержать 0,002 мг никеля. Раствор готовят в день проведения анализа. 8.4. Построение градуировочных графиков Для построения градуировочных графиков необходимо приготовить образцы для градуировки с массовой концентрацией ионов никеля от 0,08 до 4,0 мг/дм3. Условия проведения анализа должны соответствовать описанным в пунктах 6 и 10. Состав и количество образцов для построения градуировочных графиков приведены в таблице 2 Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %. Состав и количество образцов для градуировки
Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс - величину концентрации вещества в мг/дм3. 8.5. Контроль стабильности градуировочной характеристики Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал или при смене партии реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2). Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия.
где Х - результат контрольного измерения массовой концентрации никеля в образце для градуировки, мг/дм3; С - аттестованное значение массовой концентрации никеля в образце для градуировки, мг/дм3; - среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории. Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа. Значения σR приведены в таблице 1. Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность. Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график. 9. УСТРАНЕНИЕ МЕШАЮЩИХ ВЛИЯНИЙ9.1. Хроматы и бихроматы восстанавливают несколькими каплями этилового спирта после подкисления пробы серной кислотой. Хром(3+) затем отделяют, осаждая его разбавленным (1:4) раствором аммиака. Если присутствуют только ионы хрома(3+) осаждают сразу раствором аммиака и отфильтровывают выпавший осадок. 9.2. Медь, железо, кобальт, хром, марганец отделяют вариантом метода (см. п. 10.2.), в котором никель сначала экстрагируют хлороформом в виде его диметилглиоксимата, а затем переводят в водный раствор. 9.3. Для устранения мешающего влияния комплексных цианидов, роданидов и тиосульфатов отбирают такой объем пробы, чтобы в нем содержалось не более 10 мг цианид-, роданид- и тиосульфат-ионов (а также других окисляемых активным хлором веществ) и приливают 20 см3 раствора гипохлорита, в 1 см3 которого содержится 2,5 мг активного хлора. Раствор гипохлорита можно приготовить, растворяя в воде хлорную известь (8 г на 1 дм3 Н2О), гипохлорит кальция или натрия, или пропуская хлор в раствор едкого натра. Определив в нем содержание активного хлора иодометрическим методом, его разбавляют дистиллированной водой до указанной выше концентрации. Дают пробе постоять 5 минут, затем приливают 5 см3 разбавленной (1:3) серной кислоты и кипятят 20 мин. 9.4. Для устранения мешающего влияния органических веществ, которые могут образовывать с тяжелыми металлами комплексные соединения, отобранную пробу сразу или по частям переносят в чашку, выпаривают до объема 50 см3, подкисляют концентрированной серной кислотой по метиловому оранжевому, прибавляют 5 см3 концентрированной азотной кислоты, 2 см3 30 %-ного пероксида водорода (если проба содержала хроматы, они при этом восстановятся) и продолжают выпаривание до объема 15 - 20 см3, покрыв, если нужно, чашку часовым стеклом, чтобы избежать разбрызгивания жидкости. Переносят содержимое чашки в коническую колбу вместимостью 100 см3, приливают еще 5 см3 концентрированной азотной кислоты, предварительно обмывая ею стенки чашки, добавляют 10 см3 концентрированной серной кислоты, вносят несколько стеклянных шариков или капилляров, чтобы воспрепятствовать выбрасыванию жидкости толчками во время выпаривания, переносят колбу под тягу и выпаривают на плитке до появления густых паров серной кислоты. Если жидкость не станет бесцветной, приливают еще 10 см3 концентрированной азотной кислоты и повторяют выпаривание до появления паров серной кислоты. Охладив раствор до комнатной температуры, его очень осторожно разбавляют дистиллированной водой до 50 см3, приливая воду по стенкам небольшими порциями, перемешивая после добавления каждой порции. Нагревают почти до кипения, чтобы растворить все растворимые соли, и фильтруют через стеклянный фильтрующий тигель, собирая фильтрат в колбу. Первую колбу промывают двумя порциями по 5 см3 дистиллированной воды, пропуская ее через тот же фильтрующий тигель, чтобы растворить и присоединить к фильтрату оставшиеся в фильтре растворимые частицы. Фильтрат количественно переносят в мерную колбу вместимостью 100 см3, обмывая колбу, где он находился, двумя порциями по 5 см3 дистиллированной воды, после чего доводят дистиллированной водой до метки и перемешивают. В полученном растворе определяют никель, отбирая аликвотную часть раствора. 10. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ10.1. Вариант 1. В отсутствии мешающих определению металлов. Отбирают такой объем пробы (или раствора, полученного после разложения комплексных соединений выпариванием с азотной и серной кислотами), чтобы в нем содержалось от 0,002 до 0,10 мг никеля, упаривают или разбавляют до 10 см3, прибавляют 2 см3 насыщенной бромной воды, перемешивают и количественно переносят в мерную колбу вместимостью 25 см3. Приливают 3 см3 концентрированного раствора аммиака, 1 см3 раствора диметилглиоксима, доводят дистиллированной водой до метки и перемешивают. Через 10 минут измеряют оптическую плотность полученного раствора при длине волны 445 нм в кювете с толщиной поглощающего слоя 10 или 50 мм. 10.2. Вариант 2. В присутствии солей меди, железа, хрома, кобальта, марганца и др. Отбирают такой объем пробы (или раствора, полученного после разложения комплексных соединений выпариванием с азотной и серной кислотами), чтобы в нем содержалось от 0,002 до 0,10 мг никеля. Если обработки смесью азотной и серной кислот не было, а в пробе предполагается присутствие двухвалентного железа, проводят предварительное окисление последнего кипячением подкисленного раствора с 0,1 г персульфата аммония. Подкисляют, если надо, добавляя разбавленную соляную кислоту, вводят 1 - 5 см3 20 %-ного раствора калия-натрия виннокислого (в зависимости от содержания катионов, образующих осадок гидроксидов при подщелачивании раствора), вводят, если предполагают присутствие шестивалентного хрома, 2 см3 10 %-ного раствора гидрохлорида гидроксиламина и нейтрализуют разбавленным (1:1) раствором аммиака до рН = 7,5 - 9 по универсальной индикаторной бумаге. Раствор переносят в делительную воронку вместимостью 250 см, приливают 2 см3 раствора диметилглиоксима, 3 см3 хлороформа и смесь энергично встряхивают 30 с. После расслоения жидкости сливают хлороформный слой в другую делительную воронку и повторяют экстракцию еще двумя порциями хлороформа по 3 см3. Соединенные порции хлороформного экстракта встряхивают во второй делительной воронке с 5 см3 разбавленного (1:24) раствора аммиака в течение 1 мин. и переносят в первую делительную воронку, которую перед этим ополаскивают дистиллированной водой. Затем проводят реэкстракцию никеля, для чего хлороформный раствор обрабатывают 5 см3 раствора соляной кислоты, сливают хлороформный слой в другую воронку, снова обрабатывают его 5 см3 раствора соляной кислоты, сливают хлороформ и соединяют водные солянокислые растворы. В освобожденном таким образом от мешающих катионов растворе определяют никель по п. 10.1. Содержание никеля в мг/дм3 находят по градуировочным графикам. При анализе проб воды выполняют не менее двух параллельных определений. 11. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙСодержание никеля X (мг/дм3) рассчитывают по формуле:
С - концентрация никеля, найденная по градуировочному графику, мг/дм3; 25 - объем, до которого была разбавлена проба, в см3; V - объем, взятый для анализа, в см3. За результат анализа Хср принимают среднее арифметическое значение двух параллельных определений X1 и Х2:
для которых выполняется следующее условие: где r - предел повторяемости, значения которого приведены в таблице 3. Значения предела повторяемости при вероятности Р = 0,95
При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6. Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4. Значения предела воспроизводимости при вероятности Р = 0,95
При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ РИСО 5725-6. 12. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АНАЛИЗА12.1. Результат анализа Хср в документах, предусматривающих его использование, может быть представлен в виде: Хср ± Δ, Р = 0,95, где Δ - показатель точности методики. Значение Δ рассчитывают по формуле: Δ = 0,01 × δ × Хср. Значение δ приведено в таблице 1. Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: Хср ± Δл, Р = 0,95, при условии Δл < Δ, где Хср - результат анализа, полученный в соответствии с прописью методики; ±Δл - значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов анализа. Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают: - количество результатов параллельных определений, использованных для расчета результата анализа; - способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений). 12.2. В том случае, если массовая концентрация никеля в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы массовая концентрация никеля соответствовала регламентированному диапазону. Результат анализа Хср в документах, предусматривающих его использование, может быть представлен в виде: Хср ± Δ′, Р = 0,95, где ± Δ′ - значение характеристики погрешности результатов анализа, откорректированное на величину погрешности взятия аликвоты. 13. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ АНАЛИЗА ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИКонтроль качества результатов анализа при реализации методики в лаборатории предусматривает: - оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры); - контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности). Алгоритм оперативного контроля процедуры анализа с использованием метода добавок Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К. Результат контрольной процедуры Кк рассчитывают по формуле
где Х′ср - результат анализа массовой концентрации никеля в пробе с известной добавкой - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 11. Хср - результат анализа массовой концентрации никеля в исходной пробе - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 11. Норматив контроля К рассчитывают по формуле
где , - значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие массовой концентрации никеля в пробе с известной добавкой и в исходной пробе соответственно. Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 × Δ, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа. Процедуру анализа признают удовлетворительной, при выполнении условия: При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению. Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории. Приложение (рекомендуемое)Форма записи результатов анализа
СОДЕРЖАНИЕ
|