Space crew radiation safetu during space flight. Nuclear interaction characteristics of multicharged ions 
На главную | База 1 | База 2 | База 3

ГОСУДАРСТВЕННЫЙ СТАНДАРТ
СОЮЗА ССР

БЕЗОПАСНОСТЬ РАДИАЦИОННАЯ ЭКИПАЖА
КОСМИЧЕСКОГО АППАРАТА В КОСМИЧЕСКОМ ПОЛЕТЕ

ХАРАКТЕРИСТИКИ
ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЙ
МНОГОЗАРЯДНЫХ ИОНОВ

ГОСТ 25645.212-85

 

 

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

Москва

 

ИСПОЛНИТЕЛИ

A.И. Вихров, канд. физ.-мат. наук, А.И. Григорьев, д-р мед. наук, B.Е. Дудкин, канд. физ.-мат. наук, Е.Е. Ковалев, д-р техн. наук, Н.А. Нефедов, Ю.В. Потапов, В.Д. Степнов, канд. физ.-мат. наук, C.Д. Богданов, канд. физ.-мат. наук; О.Е. Богоявленская, Ю.А. Винтенко, канд. техн. наук; Д.В. Гицу, член-корр. АН МССР, Е.В. Горчаков, д-р физ.-мат. наук; К.К. Гудима, канд. физ.-мат. наук, Ф.Г. Жереги, канд. физ.-мат. наук; В.Ф. Космач, д-р физ.-мат. наук; Е.Н. Лесновский, канд. техн. наук; В.М. Николаев, В.И. Остроумов, д-р физ.-мат. наук; М.И. Панасюк; В.А. Панин, И.Я. Ремизов, канд. техн. наук; А.А. Суслов, канд. физ.-мат. наук, А.Я. Сычев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25 ноября 1985 г. № 3697

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Безопасность радиационная экипажа космического аппарата в космическом полете

ХАРАКТЕРИСТИКИ ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЙ МНОГОЗАРЯДНЫХ ИОНОВ

Space crew radiation safety during space flight.
Nuclear interaction characteristics of multicharged ions

ГОСТ
25645.212-85

Постановлением Государственного комитета СССР по стандартам от 25 ноября 1985 г. № 3697 срок введения установлен

с 01.01.87

Настоящий стандарт устанавливает количественные характеристики ядерных взаимодействий многозарядных ионов космических лучей с зарядом ядра от 2 до 29 единиц абсолютной величины заряда электрона в диапазоне кинетической энергии на нуклон от 102 до 104 МэВ в тканеэквивалентном веществе и материалах защиты.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Под многозарядными ионами космических лучей понимают ядра химических элементов, входящих в состав галактических космических лучей (ГКЛ).

1.2. К характеристикам ядерных взаимодействий относят средний пробег до ядерного взаимодействия (далее по тексту - пробег до взаимодействия) и параметр фрагментации ядер ГКЛ.

1.3. Значения пробега до взаимодействия и параметры фрагментации устанавливают для представительных ядер групп ядер ГКЛ.

Для других ядер данной группы ядер ГКЛ характеристики ядерного взаимодействия принимают такими же, как для представительного ядра данной группы.

1.4. Группы ядер ГКЛ i принимают по ГОСТ 25645.104-84. Представительные ядра групп определяют следующим образом: группа ядер гелия (α-группа) z = 2, представительное ядро 4Не; группа легких ядер (L-группа) 3 ≤ z ≤ 5, представительное ядро 9Ве; группа средних ядер (М-группа) 6 ≤ z ≤ 9, представительное ядро 14N;

группа тяжелых ядер (Н-группа) 10 ≤ z ≤ 19, представительное ядро 28Si;

группа очень тяжелых ядер (-группа) 20 ≤ z ≤ 29, представительное ядро 56Fe.

1.5. Образующиеся в результате ядерного взаимодействия ядра-фрагменты объединяют в группы j, которые принимают такими же, как и для налетающих ядер с добавлением группы протонов (р-группа) с z = 1, представительным ядром которой взято ядро водорода 1Н.

1.6. Состав тканеэквивалентного вещества - по ГОСТ 18622-79.

1.7. Характеристики ядерных взаимодействий считают не зависящими от кинетической энергии ядер ГКЛ в рассматриваемом интервале энергий.

1.8. Пояснения терминов, применяемых в настоящем стандарте, приведены в справочном приложении 1.

2. ПРОБЕГ ДО ВЗАИМОДЕЙСТВИЯ И ПАРАМЕТРЫ ФРАГМЕНТАЦИИ

2.1. Значения пробега до взаимодействия представительных ядер из каждой группы ядер ГКЛ в тканеэквивалентном веществе, графите, алюминии и железе приведены в табл. 1.

Таблица 1

г·см-2

Материал среды

Представительное ядро

4Не

9Ве

14N

28Si

56Fe

Тканеэквивалентное вещество

39,2 ± 1,2

25,3 ± 0,8

20,6 ± 0,6

14,6 ± 0,4

9,4 ± 0,3

Графит

41,2 ± 1,4

28,2 ± 0,8

23,0 ± 0,6

16,6 ± 0,4

12,0 ± 0,3

Алюминий

57,6 ± 1,8

42,5 ± 1,1

36,0 ± 0,9

27,3 ± 0,6

20,5 ± 0,4

Железо

78,3 ± 2,0

60,9 ± 1,4

54,9 ± 1,3

41,9 ± 0,9

32,7 ± 0,6

2.2. Значения пробега до взаимодействия для других материалов защиты, определяют в соответствии с рекомендуемым приложением 2.

2.3. Значения параметра фрагментации Рij представительных ядер групп ядер ГКЛ в тканеэквивалентном веществе приведены в табл. 2.

Таблица 2

Группа фрагментов j

Группы i первичных ядер ГКЛ

α

L

М

H

vH

Р

0,44 ± 0,11

2,20 ± 0,30

2,80 ± 0,20

4,20 ± 0,30

7,40 ± 0,40

α

0,41 ± 0,03

0,55 ± 0,08

1,00 ± 0,05

1,35 ± 0,20

1,75 ± 0,40

L

0,13 ± 0,04

0,25 ± 0,02

0,20 ± 0,05

0,15 ± 0,05

М

0,12 ± 0,02

0,34 ± 0,07

0,16 ± 0,06

H

0,20 ± 0,07

0,38 ± 0,09

vH

0,34 ± 0,09

2.4. Значения параметра фрагментации Pij представительных ядер групп ядер ГКЛ на ядрах с массовым числом от 12 до 72 приведены в табл. 3.

Таблица 3

Группа фрагментов j

Группы i первичных ядер ГКЛ

α

L

M

H

vH

Р

0,45 ± 0,12

2,20 ± 0,30

2,80 ± 0,20

4,80 ± 0,40

10,10 ± 0,30

α

0,41 ± 0,03

0,55 ± 0,08

0,90 ± 0,05

1,33 ± 0,15

1,80 ± 0,21

L

0,15 ± 0,07

0,23 ± 0,02

0,18 ± 0,05

0,22 ± 0,05

М

0,16 ± 0,04

0,33 ± 0,07

0,17 ± 0,04

H

0,25 ± 0,06

0,31 ± 0,06

vH

0,23 ± 0,05

ПРИЛОЖЕНИЕ 1

Справочное

ПОЯСНЕНИЯ ТЕРМИНОВ, ПРИМЕНЯЕМЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

Средний пробег ядер λi до ядерного взаимодействия - расстояние, проходимое ядрами в веществе, на котором происходит ослабление плотности потока налетающих ядер группы i за счет ядерных взаимодействий в е раз

Фрагментация ядер - процесс образования вторичных ядер из налетающего ядра в ядро-ядерных взаимодействиях

Ядерные фрагменты - вторичные ядра, образующиеся из налетающего ядра в ядро-ядерных взаимодействиях и имеющие скорость, близкую к скорости налетающего ядра

Параметр фрагментации - среднее число фрагментов группы j, образующихся в единичном акте взаимодействия ядер группы i с ядрами атомов вещества

Представительное ядро группы ядер ГКЛ - ядро, заряд которого наиболее близок к величине средневзвешенного по составу группы ядер ГКЛ заряда

ПРИЛОЖЕНИЕ 2

Рекомендуемое

ОПРЕДЕЛЕНИЕ ДЛИН ПРОБЕГОВ ДО ВЗАИМОДЕЙСТВИЯ

1. Значения пробега до взаимодействия λi вычисляют по формуле

(1)

где λi - пробег до взаимодействия, г·см-2;

ρ - плотность материала среды, г·см-3;

nk - плотность атомов элемента k в материале среды, см-3;

σik - полное сечение неупругого взаимодействия налетающего ядра из группы i с ядром атома элемента k, см2;

2. Значение плотности атомов элемента в материале среды определяют по формуле

nk = ρχkNA/Ak,

(2)

где nk - плотность атомов элемента в материале среды, см-3;

χk - массовая доля элемента k, входящего в состав материала среды;

NA - число Авогадро;

Ak - массовое число элемента.

3. Значение полного сечения неупругого взаимодействия σik рассчитывают по формуле

(3)

где σik - полное сечение неупругого взаимодействия, см2,

R0 = (1,32 ± 0,01)·10-13 см и b = 0,85 ± 0,03 - полуэмпирические параметры,

Ai, Ak - массовые числа налетающего ядра и ядра-мишени, соответственно.

СОДЕРЖАНИЕ