ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМУ,
КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ПОЧВ МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ПНД Ф 16.1:2.3:2.2:3.57-08 (ФР.1.31.2009.05754) Методика допущена для целей
государственного МОСКВА 2008 г. Методика рассмотрена и одобрена ФГУ «Федеральный центр анализа и оценки техногенного воздействия» (ФГУ «ФЦАО»).
ОБЛАСТЬ ПРИМЕНЕНИЯНастоящий документ устанавливает методику количественного химического анализа определения массовой доли алюминия в почвах, осадках сточных вод, шламах, отходах производства и потребления, активном иле очистных сооружений, донных отложениях фотометрическим методом с алюминоном. Диапазон измерений массовой доли алюминия от 0,05 до 1,5 %. Если массовая доля алюминия в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление раствора после разложения пробы таким образом, чтобы массовая доля алюминия соответствовала регламентированному диапазону. Мешающее влияние железа (III), образующего аналогично окрашенное соединение, устраняется восстановлением его аскорбиновой кислотой в ходе проведения анализа. 1 МЕТОД ИЗМЕРЕНИЙМетод основан на способности иона алюминия образовывать с алюминоном комплексное соединение оранжево-красного цвета, которое фотометрируется при длине волны 530 нм в кювете с толщиной поглощающего слоя 20 мм. 2 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХНастоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1. Значения показателя точности методики используют при: - оформлении результатов анализа, выдаваемых лабораторией; - оценке деятельности лабораторий на качество проведения испытаний; - оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории. Таблица 1 - Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости
______________ 1 Соответствует относительной расширенной неопределенности с коэффициентом охвата k = 2 и n = 1. 2 Соответствует относительной расширенной неопределенности с коэффициентом охвата k = 2 и n = 2. 3 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ, ПОСУДА, МАТЕРИАЛЫ И РЕАКТИВЫ3.1 Средства измерений, вспомогательное оборудование, посуда и материалы Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны λ = 530 нм. Кюветы с толщиной поглощающего слоя 20 мм. Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г по ГОСТ 24104-2001. Гири. Общие технические условия по ГОСТ 7328-2001. ГСО с аттестованным содержанием алюминия с погрешностью не более 1 %, при Р = 0,95. Колбы мерные вместимостью 100, 200, 250, 500 и 1000 см3 по ГОСТ 1770-74. Пипетки мерные вместимостью 1, 5, 10 см3 по ГОСТ 29227-91. Цилиндры 2-250; 1-100 по ГОСТ 1770-74. Воронки В ХС по ГОСТ 25336-82. Колбы конические вместимостью 350 см3 по ГОСТ 25336-82. Стаканы термостойкие вместимостью 100 - 150 см3 по ГОСТ 25336-82. Стаканы для взвешивания СВ по ГОСТ 25336-82. Чашки платиновые по ГОСТ 6563-75* Плитка электрическая закрытого типа по ГОСТ 14919-83. Печь муфельная. Баня песчаная. Баня водяная. Фильтр обеззоленный «белая лента» по ТУ 6-09-1678-86. Примечания. 1 Допускается использование других типов средств измерений и вспомогательного оборудования, посуды и материалов с метрологическими и техническими характеристиками не хуже указанных. 2 Приборы должны быть поверены в установленные сроки. 3.2 Реактивы Кислота серная по ГОСТ 4204-77. Кислота азотная по ГОСТ 4461-77. Кислота соляная по ГОСТ 3118-77. Кислота аскорбиновая по ТУ 64-5-95. Кислота фтористоводородная по ГОСТ 10484-78. Кислота уксусная ледяная по ГОСТ 61-75. Натрий уксуснокислый по ГОСТ 199-78. Аммиак водный по ГОСТ 3760-79. Алюминон (аммонийная соль ауринтрикарбоновой кислоты) по ТУ 6-09-5205. Алюминий металлический гранулированный по ТУ 6-09-3742. Железа оксид Вода дистиллированная по ГОСТ 6709-72. Примечание. Все реактивы, используемые для анализа, должны быть квалификации х.ч. или чда. 4 УСЛОВИЯ БЕЗОПАСНОГО ПРОВЕДЕНИЯ РАБОТ4.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76 И ПОТ Р М-004-97. 4.2 Электробезопасность при работе с электроустановками по ГОСТ 12.1.019-79. 4.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-91. 4.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83. 5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВВыполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа, изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра и освоивший методику. 6 УСЛОВИЯ ИЗМЕРЕНИЙИзмерения проводятся в следующих условиях: температура окружающего воздуха (20 ± 5)° С; атмосферное давление (84,0 - 106,7) кПа (630 - 800 мм рт.ст); относительная влажность не более 80 % при t = 25 °C; напряжение сети (220 ± 22) В; частота переменного тока (50 ± 1) Гц. 7 ОТБОР И ХРАНЕНИЕ ПРОБОтбор проб производится в соответствии с требованиями ГОСТ 17.4.3.01-83 «Почвы. Общие требования к отбору проб»; ГОСТ 17.4.4.02-84 «Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа»; ПНД Ф 12.1:2:2.2:2.3.2-2003 «Отбор проб почв, грунтов, осадков биологических очистных сооружений, шламов промышленных сточных вод, донных отложений искусственно созданных водоёмов, прудов-накопителей и гидротехнических сооружений», ПНД Ф 12.4.2.1-99 «Отходы минерального происхождения. Рекомендации по отбору и подготовке проб. Общие положения» и другими нормативными документами, утверждёнными и применяемыми в установленном порядке. При отборе проб составляется сопроводительный документ, в котором указывается: цель анализа, предполагаемые загрязнители; место, время отбора; номер пробы; должность, фамилия отбирающего пробу, дата. 8 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ8.1 Подготовка прибора Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с руководством по его эксплуатации. 8.2 Приготовление вспомогательных растворов 8.2.1 Приготовление ацетатного буферного раствора (рН = 4,6 ± 0,1) Растворяют 6,8 г уксуснокислого натрия трехводного в 100 - 150 см3 дистиллированной воды, переносят в мерную колбу вместимостью 1000 см3, приливают 3,0 см3 ледяной уксусной кислоты, постепенно перемешивают и разбавляют до метки дистиллированной водой. Раствор хранят в сосуде из полиэтилена. Срок хранения - 3 месяца. 8.2.2 Приготовление раствора аскорбиновой кислоты 2 % 200 мг аскорбиновой кислоты растворяют в 10 см3 дистиллированной воды. Раствор готовят непосредственно перед проведением анализа. 8.2.3 Приготовление раствора алюминона 0,1 % Навеску 0,100 г алюминона растворяют в стакане в небольшом количестве нагретой дистиллированной воды. Раствор охлаждают до комнатной температуры, прибавляют 2,5 см3 ацетатного буферного раствора и переливают в мерную колбу вместимостью 100 см3. Раствор доводят до метки дистиллированной водой. Приготовленный раствор хранят в темной герметично закрытой склянке не более 3-х месяцев. 8.2.4 Приготовление раствора соляной кислоты (1:1) Для приготовления раствора разбавляют концентрированную соляной кислоты (ρ = 1,19 г/см3) дистиллированной водой в соотношении 1:1. Кислоту осторожно приливают к воде. Раствор готовят в термостойкой посуде. Раствор хранят в полиэтиленовой посуде в течение 6 месяцев. 8.2.5 Приготовление раствора соляной кислоты (1:4) Для приготовления раствора к 4 частям дистиллированной воды приливают 1 часть концентрированной соляной кислоты (ρ = 1,19 г/см3). Раствор готовят в термостойкой посуде. Раствор хранят в полиэтиленовой посуде в течение 6 месяцев. 8.2.6 Приготовление раствора аммиака (1:1) К 50 см3 концентрированного аммиака водного добавляют 50 см3 дистиллированной воды. Раствор хранят в сосуде из полиэтилена или фторопласта в течение 2 месяцев. 8.2.7 Приготовление хлорного железа Навеску 0,5 г окиси железа помещают в коническую колбу вместимостью 350 см3, приливают 50 см3 соляной кислоты (1:1) и, накрыв колбу стеклянным шариком, нагревают на водяной бане до полного растворения. Раствор охлаждают, переводят в мерную колбу вместимостью 500 см3, доводят дистиллированной водой до метки и перемешивают. Массовая концентрация окиси железа в растворе равна 1,0 мг/см3. 8.3 Приготовление градуировочных растворов алюминия 8.3.1 Приготовление основного градуировочного раствора с концентрацией 1 мг/см3 Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией. В 1 см3 раствора должен содержаться 1 мг иона алюминия. Раствор хранят в течение 3 месяцев. 8.3.2 Приготовление рабочего градуировочного раствора с концентрацией 0,01 мг/см3 Раствор готовят соответствующим разбавлением основного градуировочного раствора. В 1 см3 раствора должен содержаться 0,01 мг иона алюминия. Раствор готовят в день проведения анализа. 8.3.3 Приготовление градуировочных растворов из металлического алюминия. При отсутствии ГСО градуировочные растворы можно приготовить из металлического алюминия. Для приготовления основного градуировочного раствора навеску 0,5 г металлического алюминия растворяют в 100 см3 соляной кислоты (1:1). Раствор охлаждают, переносят в мерную колбу вместимостью 500 см3, доводят до метки дистиллированной водой и перемешивают. Полученная массовая концентрация основного градуировочного раствора равна 1,0 мг/см3. Раствор хранят в течение 3 месяцев. Рабочий раствор готовят соответствующим разбавлением основного градуировочного раствора. В 1 см3 раствора должен содержаться 0,01 мг иона алюминия. Раствор готовят в день проведения анализа. 8.4 Построение градуировочного графика Для построения градуировочного графика необходимо приготовить образцы для градуировки с массовой концентрацией ионов алюминия от 0,02 до 0,10 мг/100 см3. Условия анализа, его проведение должны соответствовать п. 6. Состав и количество образцов для градуировки приведены в таблице 2. Таблица 2 - Состав и количество образцов для градуировки
В каждую колбу прибавляют 5 см3 хлорного железа, разбавляют до 20 см3 дистиллированной водой и далее поступают как при анализе проб (п. 10). Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абцисс - массу ионов алюминия в мг/100 см3 раствора. 8.5 Контроль стабильности градуировочной характеристики Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал или при смене партии реактивов, после поверки или ремонта приборов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2). Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия: |X - С| < 0,01 × С × 1,96σRл (1) где X - результат контрольного измерения содержания ионов алюминия в образце для градуировки; С - аттестованное содержание ионов алюминия в образце для градуировки; σRл - среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории. Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: σRл = 0,84σR, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа. Значения σR приведены в таблице 1. Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность. Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график. 8.6 Определение влажности пробы 8.6.1 Подготовка фарфоровых чашек. Пустые пронумерованные чашки доводят до постоянной массы в сушильном шкафу при t = (105 ± 2) °C, охлаждают в эксикаторе и взвешивают. 8.6.2 Для пересчета массы навески на абсолютно сухую пробу определяют содержание гигроскопической влаги. Для этого берут 3 навески по 0,2 г, помещают в предварительно подготовленные фарфоровые чашки (п. 8.7.1) и высушивают при t = (105 ± 5) °С в сушильном шкафу до постоянной массы. (2) где g - содержание гигроскопической влаги, %; Рвозд.сух. - масса воздушно-сухой навески, г; Рсух. - масса абсолютно сухой навески, г. При выполнении условия: |gmax - gmin| £ 12 % вычисляют gcp: (3) Определяют коэффициент пересчета на абсолютно-сухую пробу: где (4) gcp - содержание гигроскопической влаги, %. Точная масса навески абсолютно сухой пробы почвы (г) рассчитывается по формуле: mабс.сух. = mвозд.сух. × К, (5) где К - коэффициент пересчета (4). 9 ПОДГОТОВКА ПРОБ К АНАЛИЗУНавеску пробы 0,2 г разлагают одним из следующих способов. Способ 1. Пробу помещают в термостойкий стакан вместимостью 100 - 150 см3, прибавляют 20 см3 соляной кислоты (1:1), 5 см3 азотной кислоты и растворяют при нагревании. После растворения разбавляют до 50 см3 водой и отфильтровывают осадок через фильтр «белая лента» диаметром 9 см, промывая его горячей водой. Фильтрат собирают в мерную колбу соответствующей вместимости (см. таблицу 3), доводят до метки дистиллированной водой и перемешивают. Способ 2. Пробу помещают в платиновую чашку, смачивают водой, прибавляют 1 см3 концентрированной серной кислоты, 5 - 7 см3 фтористоводородной кислоты и выпаривают на песчаной бане досуха. Чашку с остатком прокаливают в муфельной печи до удаления паров серного ангидрида. После охлаждения в чашку прибавляют 20 - 25 см3 дистиллированной воды, 20 см3 соляной кислоты (1:1) и растворяют остаток в чашке при нагревании. После растворения содержимое чашки переводят в мерную колбу соответствующей вместимости (см. таблицу 3). Таблица 3
10 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙВ мерную колбу вместимостью 100 см3 отбирают аликвоту раствора в соответствии с таблицей 3, прибавляют 2 см3 раствора аскорбиновой кислоты и перемешивают. В колбу прибавляют дистиллированную воду до объема 20 см3 и нейтрализуют раствором аммиака (1:1) до появления сиреневой или светло-коричневой окраски раствора. Затем при перемешивании прибавляют соляную кислоту (1:4) до обесцвечивания раствора, 30 см3 ацетатного буферного раствора и перемешивают. Затем добавляют 2 см3 раствора алюминона, доводят до метки ацетатным буферным раствором, перемешивают и через 40 мин измеряют оптическую плотность окрашенного раствора при длине волны 530 нм в кювете с толщиной оптического слоя 20 мм по отношению к холостой пробе. Содержание ионов алюминия находят по градуировочному графику. 11 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ11.1 Массовую долю алюминия (%) вычисляют по формуле (6) где С - масса алюминия, найденная по градуировочному графику, мг; V - общий объем раствора, см3; V1 - аликвота раствора, см3; mабс.сух. - масса пробы, пересчитанная на абсолютно-сухую, мг. 11.2 За результат анализа принимают единичный результат (X) или среднее арифметическое значение (Хср) двух параллельных определений Х1 и Х2 (7) для которых выполняется следующее условие: |Х1 - Х2| < 0,01 × r × Хср, (8) где r - предел повторяемости, значения которого приведены в таблице 4. Таблица 4 - Значения предела повторяемости при вероятности Р = 0,95
При невыполнении условия (8) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6. 11.3 Расхождение между единичными результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 5. Таблица 5 - Значения предела воспроизводимости при вероятности Р = 0,95
11.4 Расхождение между средними арифметическими результатами анализа, полученными в двух лабораториях, не должно превышать критической разности. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их общее среднее арифметическое значение. Значения критической разности приведены в таблице 6. Таблица 6 - Значения критической разности при вероятности Р = 0,95
______________ 3 Соответствует пределу воспроизводимости по РМГ 61-2003 При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно раздела 5 ГОСТ Р ИСО 5725-6. 12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙРезультат измерения в документах, предусматривающих его использование, может быть представлен в виде: 12.1 X ± Δ, Р = 0,95, где X - единичный результат измерения, %; Δ - показатель точности методики, %. Значение Δ рассчитывают по формуле: Δ = 0,01 × δ × Х. Значение δ приведено в таблице 1. 12.2 Xcp ± Δх, Р = 0,95, где Xcp - среднее (среднее арифметическое или медиана) результатов параллельных определений, %; Δх - показатель точности методики, %. Значение Δх рассчитывают по формуле: Δ = 0,01 × δх × Х. Значение δх приведено в таблице 1. 12.3 Допустимо результат измерения в документах, выдаваемых лабораторией, представлять в виде: Х ± Δл, Р = 0,95, где X - результат анализа, полученный в точном соответствии с прописью методики [единичный результат или среднее (среднее арифметическое или медиана) результатов параллельных определений]; ± Δл - значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории для единичного результата или среднего арифметического параллельных определений, и обеспечиваемое контролем стабильности результатов измерений. Примечание. При представлении результата измерения в документах, выдаваемых лабораторией, указывают: - количество результатов параллельных определений, использованных для расчета результата анализа; - способ определения результата измерения (среднее арифметическое значение или медиана результатов параллельных определений). 13 КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ АНАЛИЗА ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИКонтроль качества результатов анализа при реализации методики в лаборатории предусматривает: - оперативный контроль процедуры измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры); - контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности). 13.1 Алгоритм оперативного контроля процедуры анализа с использованием метода добавок Контроль погрешности выполняют в одной серии с КХА рабочих проб. Образцами для контроля являются реальные пробы. Отбирают вдвое большее количество аналитической пробы, чем это необходимо для выполнения анализа. Первую половину анализируют в точном соответствии с прописью МВИ и получают результат исходной рабочей пробы (X). Другую половину анализируют в соответствии с прописью методики, в вытяжку анализируемой пробы делают добавку (С) и получают результат анализа рабочей пробы с добавкой (X'). Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К. Результат контрольной процедуры Кк рассчитывают по формуле Кк = |Х' - Х - Сд| (9) где X' - результат анализа в пробе с известной добавкой; X - результат анализа в исходной пробе. Норматив контроля К рассчитывают по формуле (10) где , - значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие концентрации ионов алюминия в пробе с известной добавкой и в исходной пробе соответственно. Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 × Δх, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа. Процедуру анализа признают удовлетворительной, при выполнении условия: Кк £ К (11) При невыполнении условия (11) контрольную процедуру повторяют. При повторном невыполнении условия (11) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению. 13.2 Алгоритм оперативного контроля процедуры измерений с использованием метода варьирования навески Образцами для контроля являются рабочие пробы. Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К. Результат контрольной процедуры Кк рассчитывают по формуле Кк = |Х' - Х|, (12) где Х' - результат анализа в рабочей пробе; X - результат анализа в рабочей пробе, полученной путем варьирования навески. Норматив контроля К рассчитывают по формуле (13) где , - установленные в лаборатории при реализации методики значения характеристики погрешности результатов измерений массовой концентрации ионов алюминия в исходной (рабочей) пробе и в рабочей пробе, полученной путем варьирования навески, соответственно. Примечание. Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 × Δх, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений. Процедуру измерений признают удовлетворительной при выполнении условия: Кк £ К (14) При невыполнении условия (14) контрольную процедуру повторяют. При повторном невыполнении условия (14) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению 13.3 Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К. Результат контрольной процедуры Кк рассчитывают по формуле Кк = |Ccp - C|, (15) где Сср - результат анализа массовой концентрации ионов алюминия в образце для контроля - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (8) раздела 11; С - аттестованное значение образца для контроля. Норматив контроля К рассчитывают по формуле К = Δл, (16) где ± Δл - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля. Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 × Δ, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа. Процедуру анализа признают удовлетворительной, при выполнении условия: Кк £ К (17) При невыполнении условия (17) контрольную процедуру повторяют. При повторном невыполнении условия (17) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению. Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории. СОДЕРЖАНИЕ
|