На главную | База 1 | База 2 | База 3
Испытания и Сертификация Испытательный центр Орган по сертификации Строительная экспертиза Обследование зданий Тепловизионный контроль Ультразвуковой контроль Проектные работы Контроль качества строительства Скачать базы Государственные стандартыДекларация о соответствии Единый перечень продукции ТС Классификатор государственных стандартов Общероссийский классификатор стандартов Обязательная сертификация Окп Тематические сборники Технические регламенты РФ Технические регламенты Таможенного союзаСтроительная документацияТехническая документацияПоддержать проект
Поддержать проект
Скачать базу одним архивом
Скачать обновления

Библиотека государственных стандартов

Дата актуализации: 01.01.2024

1 . . . 4466 4467 4468 4469 4470 [4471] 4472 4473 4474 4475 4476 4477 . . . 4985 (49841 найдено)
ОбозначениеДата введенияСтатус
ГОСТ Р 70908-2023 Аддитивные технологии. Композиции металлопорошковые. Определение формы частиц01.12.2023действует
Название англ.: Additive technologies. Metal powder compositions. Determination of particle shape Область применения: Настоящий стандарт распространяется на металлопорошковые композиции (МПК), применяемые при аддитивном производстве (АП), и устанавливает микроскопический метод определения формы частиц МПК. Настоящий стандарт предусматривает выявление и оценку количества частиц сферической, округлой и другой формы (агломераты/агрегаты, угловатые частицы, стержневые и т. д.), а также частиц с дефектом поверхности (частицы с сателлитами и другими дефектами). Метод основан на определении размеров проекции частицы под микроскопом и последующем вычислении факторов формы частиц Нормативные ссылки: ГОСТ 5556;ГОСТ 6672;ГОСТ 9284;ГОСТ 12026;ГОСТ 23148;ГОСТ Р 51574;ГОСТ Р 55878;ГОСТ Р 57558;ГОСТ Р 58144
ГОСТ Р 70909-2023 Аддитивные технологии. Композиции металлопорошковые. Определение размера частиц сухим просеиванием01.12.2023действует
Название англ.: Additive technologies. Metal powder compositions. Determination of particle size by dry sieving Область применения: Настоящий стандарт распространяется на металлопорошковые композиции (МПК) и устанавливает метод определения размера частиц сухим просеиванием. Настоящий стандарт не распространяется на МПК с формой частиц, существенно отличающейся от сферической (чешуйчатой, иглообразной, дендритной и пластинчатой). Настоящий стандарт допускается применять для определения размера частиц металлических порошков, не предназначенных для использования в аддитивных технологических процессах Нормативные ссылки: ГОСТ 12.0.004;ГОСТ 12.1.004;ГОСТ 12.4.009;ГОСТ 12.4.021;ГОСТ 23148;ГОСТ Р 57558
ГОСТ Р 70910-2023 Аддитивные технологии. Композиции металлопорошковые. Определение текучести с помощью воронки Холла01.12.2023действует
Название англ.: Additive technologies. Metal powder compositions. Flow rate determination by means of a Hall funnel Область применения: Настоящий стандарт распространяется на металлопорошковые композиции (МПК) и устанавливает метод определения текучести с помощью воронки Холла (далее – воронка). Метод распространяется на порошки, которые свободно протекают через воронки с отверстием установленного диаметра. Настоящий стандарт допускается применять для определения текучести металлических порошков, не предназначенных для применения в аддитивных технологических процессах Нормативные ссылки: ГОСТ 12.0.004;ГОСТ 12.1.004;ГОСТ 12.4.009;ГОСТ 12.4.021;ГОСТ 166;ГОСТ OIML R 76-1-2011;ГОСТ 5632;ГОСТ 8505;ГОСТ 19300;ГОСТ 23148;ГОСТ Р 57558;ГОСТ Р ИСО 3534-1;ГОСТ Р ИСО 5725-1-2002
ГОСТ Р 70911-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на воздействие одиночного механического удара01.10.2023действует
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment for the effect of single mechanical shock Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА Нормативные ссылки: ГОСТ Р 52762;ГОСТ Р 57700.37;ГОСТ Р 70201;ГОСТ Р 70291
ГОСТ Р 70912-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на воздействие акустического шума01.10.2023действует
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment to the effect to acoustic noise Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА Нормативные ссылки: ГОСТ Р 57700.37;ГОСТ 30630.1.5;ГОСТ Р 70201;ГОСТ Р 70291
ГОСТ Р 70913-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на стационарные тепловые воздействия01.10.2023действует
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment to stationary thermal effects Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА Нормативные ссылки: ГОСТ 16962;ГОСТ 16962.1;ГОСТ 21964;ГОСТ 30630.0.0;ГОСТ 30630.2.1 ;ГОСТ Р 57700.37;ГОСТ Р 70201;ГОСТ Р 70291
ГОСТ Р 70914-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на воздействие случайной вибрации01.10.2023действует
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment for the effect of random vibration Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА. Подсистему виртуальных испытаний ЭА на воздействие случайной вибрации применяют на ранних этапах проектирования ЭА следующего назначения: промышленная, для энергетики, оборонно-промышленного комплекса, аэрокосмической отрасли, судостроения, медицинская, автомобильная, для навигации и радиолокации, потребительская, для фискального и торгового оборудования, связи (телекоммуникации), вычислительной техники, для автоматизации и интеллектуального управления, систем безопасности, светотехники, автоматизированного транспорта и движущейся робототехники. ЭА состоит из электронных шкафов и блоков, печатных узлов и электронной компонентной базы (ЭКБ) (микросхем, транзисторов, резисторов и т. д.). На ЭКБ и ЭА оказывает влияние воздействие случайной вибрации. Случайная вибрация может приводить к несоответствиям ЭКБ и ЭА требованиям к их стойкости (прочности и устойчивости) к воздействию случайной вибрации. Настоящий стандарт устанавливает основные положения технологии, позволяющей проводить анализ показателей стойкости ЭА к воздействию случайной вибрации с применением математического моделирования и виртуальных испытаний ЭА на воздействие случайной вибрации при проектировании. Анализ показателей стойкости ЭА к воздействию случайной вибрации необходимо осуществлять на ранних этапах проектирования ЭА посредством проведения математического моделирования и виртуализации испытаний ЭА на воздействие случайной вибрации при проектировании. Для анализа показателей стойкости ЭА к воздействию случайной вибрации методом математического моделирования (виртуализации испытаний ЭКБ и ЭА на воздействие случайной вибрации) следует применять аттестованные программные средства, а при необходимости – аттестованные программно-аппаратные средства. Требования к программно-аппаратным средствам устанавливаются по согласованию с заказчиками Нормативные ссылки: ГОСТ Р 57700.37;ГОСТ Р 70201;ГОСТ Р 70291
ГОСТ Р 70915-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на нестационарные тепловые воздействия01.10.2023действует
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment to non-stationary thermal effects Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА. Подсистема виртуальных испытаний ЭА на нестационарные тепловые воздействия применяется на ранних этапах проектирования ЭА следующего назначения:промышленная, для энергетики, оборонно-промышленного комплекса, аэрокосмической отрасли, судостроения, медицинская, автомобильная, для навигации и радиолокации, потребительская, для фискального и торгового оборудования, связи (телекоммуникации), вычислительной техники, для автоматизации и интеллектуального управления, систем безопасности, светотехники, автоматизированного транспорта и движущейся робототехники. ЭА состоит из электронных шкафов и блоков, печатных узлов и электронной компонентной базы (ЭКБ) (микросхем, транзисторов, резисторов и т. д.). На ЭКБ и ЭА оказывают влияние нестационарные тепловые воздействия. Нестационарные тепловые воздействия могут приводить к несоответствиям ЭКБ и ЭА требованиям к их стойкости (прочности и устойчивости) к нестационарным тепловым воздействиям. Настоящий стандарт устанавливает основные положения технологии, позволяющей проводить анализ показателей стойкости ЭА к нестационарным тепловым воздействиям с применением математического моделирования и виртуальных испытаний ЭА на нестационарные тепловые воздействия при проектировании. Анализ показателей стойкости ЭА к нестационарным тепловым воздействиям должен осуществляться на ранних этапах проектирования ЭА посредством проведения математического моделирования и виртуализации испытаний ЭА на нестационарные тепловые воздействия при проектировании. Для анализа показателей стойкости ЭА к нестационарным тепловым воздействиям методом математического моделирования (виртуализации испытаний ЭКБ и ЭА на нестационарные тепловые воздействия) следует применять аттестованные программные средства, а при необходимости – аттестованные программно-аппаратные средства. Требования к программно-аппаратным средствам устанавливаются по согласованию с заказчиками Нормативные ссылки: ГОСТ 16962;ГОСТ 16962.1;ГОСТ 21964;ГОСТ 30630.0.0;ГОСТ 30630.2.1;ГОСТ Р 57700.37;ГОСТ Р 70201;ГОСТ Р 70291
ГОСТ Р 70916-2023 Блоки сложно-функциональные. Термины и определения01.01.2024действует
Название англ.: IP cores. Terms and definitions Область применения: Настоящий стандарт устанавливает термины и определения основных понятий сложно-функциональных блоков, применяемых при разработке интегральных микросхем. Термины, установленные настоящим стандартом, рекомендуются для применения во всех видах документации и литературы (по отрасли микроэлектроники), входящих в сферу действия работ по стандартизации и/или использующих результаты этих работ
ГОСТ Р 70917-2023 Мопеды и мотоциклы с электрическим приводом. Метод испытаний для оценки эффективности систем рекуперативного торможения01.12.2023действует
Название англ.: Electrically propelled mopeds and motorcycles. Test method for evaluating performance of regenerative braking systems Область применения: Настоящий стандарт распространяется на системы рекуперативного торможения электрических мопедов и мотоциклов, приводимых в движение тяговыми электродвигателями (ТЭД) с аккумуляторными батареями, и устанавливает метод испытаний для оценки эффективности. Эффективность системы рекуперативного торможения оценивают в рамках двух аспектов: во-первых, насколько система рекуперативного торможения может увеличить пробег мотоцикла или мопеда или снизить потребление энергии; во-вторых, насколько эффективна система ТЭД при работе в качестве генератора в режиме рекуперативного торможения Нормативные ссылки: ISO/TS 19466:2017, ISO 13064-1:2012;ISO 13064-2:2012;IEC 60034-1;IEC 60034-2-1
1 . . . 4466 4467 4468 4469 4470 [4471] 4472 4473 4474 4475 4476 4477 . . . 4985 (49841 найдено)
()