|
Библиотека государственных стандартовДата актуализации: 01.12.2024[1] 2 3 (25 найдено)
Обозначение | Дата введения | Статус | ГОСТ Р 70201-2022 Системы автоматизированного проектирования электроники. Оптимальное сочетание натурных и виртуальных испытаний электроники на надежность и внешние воздействующие факторы. Требования и порядок проведения при выполнении технического задания на НИОКР | 01.08.2022 | действует |
Название англ.: Electronics automated design systems. The optimal combination of full-scale and virtual tests of electronics for reliability and external in fluencing factors. Requirements and procedure for carrying out the technical assignment forR&D Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА) и электронной компонентной базы (ЭКБ) Нормативные ссылки: ГОСТ 15.016;ГОСТ 27.003;ГОСТ 21964;ГОСТ 28934;ГОСТ Р 60.0.7.2;ГОСТ Р 60.0.7.3;ГОСТ Р 60.0.7.4;ГОСТ Р 60.0.7.5;ГОСТ Р 57700.37 | ГОСТ Р 70290-2022 Системы автоматизированного проектирования электроники. Термины и определения | 01.10.2022 | действует |
Название англ.: Electronics automated design systems. Terms and definitions Область применения: Настоящий стандарт устанавливает термины и определения понятий в области систем автоматизированного проектирования электроники. Термины, установленные настоящим стандартом, обязательны для применения во всех видах документации и рекомендуются в научно-технической, учебной и справочной литературе в области систем автоматизированного проектирования электроники, входящих в сферу действия работ по стандартизации и/или использующих результаты этих работ. Настоящий стандарт базируется на дорожной карте развития [1] | ГОСТ Р 70291-2022 Системы автоматизированного проектирования электроники. Состав и структура системы автоматизированного проектирования электронной аппаратуры | 01.10.2022 | действует |
Название англ.: Electronics automated design systems. Composition and structure of the computer-aided design of electronic equipment Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний ЭА, а также на всех последующих этапах жизненного цикла ЭА. САПР ЭА применяется на ранних этапах проектирования ЭА следующего назначения: промышленная, для энергетики, оборонно-промышленного комплекса, аэрокосмической отрасли, судостроения, медицинская, автомобильная, для навигации и радиолокации, потребительская, для фискального и торгового оборудования, связи (телекоммуникации), вычислительной техники, автоматизации и интеллектуального управления, систем безопасности, светотехники, автоматизированного транспорта и движущейся робототехники | ГОСТ Р 70292-2022 Системы автоматизированного проектирования электроники. Подсистема автоматизированного создания карт рабочих режимов электронной компонентной базы | 01.10.2022 | действует |
Название англ.: Electronics automated design systems. Subsystem for automated creation of maps of operating modes of the electronic component base Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний ЭКБ и ЭА, а также на всех последующих этапах жизненного цикла ЭКБ и ЭА | ГОСТ Р 70293-2022 Системы автоматизированного проектирования электроники. Подсистема автоматизированного анализа показателей надежности электронной аппаратуры | 01.10.2022 | действует |
Название англ.: Electronics automated design systems. Subsystem for automated analysis of reliability indicators for electronic equipment Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний ЭКБ и ЭА, а также на всех последующих этапах жизненного цикла ЭКБ и ЭА. Подсистема автоматизированного анализа показателей надежности электронной аппаратуры на ранних этапах проектирования ЭА по результатам математического моделирования ЭКБ и ЭА на ВВФ применяется на ранних этапах проектирования ЭА следующего назначения: промышленная, для энергетики, оборонно-промышленного комплекса, аэрокосмической отрасли, судостроения, медицинская, автомобильная, для навигации и радиолокации, потребительская, для фискального и торгового оборудования, связи (телекоммуникации), вычислительной техники, для автоматизации и интеллектуального управления, систем безопасности, светотехники, автоматизированного транспорта и движущейся робототехники. ЭА состоит из электронных шкафов и блоков, печатных узлов и ЭКБ (микросхем, транзисторов, резисторов и т. д.). На ЭКБ и ЭА оказывают влияние внешние дестабилизирующие факторы – электрические, тепловые, механические, климатические, биологические, радиационные, электромагнитные, специальных сред и термические. Внешние дестабилизирующие факторы могут приводить к несоответствиям ЭКБ и ЭА требованиям к их прочности и устойчивости к ВВФ. Настоящий стандарт устанавливает основные положения технологии, позволяющей проводить анализ показателей надежности электронной аппаратуры на основе математического моделирования и виртуализации испытаний ЭКБ и ЭА на ВВФ при проектировании | ГОСТ Р 70911-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на воздействие одиночного механического удара | 01.10.2023 | действует |
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment for the effect of single mechanical shock Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА Нормативные ссылки: ГОСТ Р 52762;ГОСТ Р 57700.37;ГОСТ Р 70201;ГОСТ Р 70291 | ГОСТ Р 70912-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на воздействие акустического шума | 01.10.2023 | действует |
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment to the effect to acoustic noise Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА Нормативные ссылки: ГОСТ Р 57700.37;ГОСТ 30630.1.5;ГОСТ Р 70201;ГОСТ Р 70291 | ГОСТ Р 70913-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на стационарные тепловые воздействия | 01.10.2023 | действует |
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment to stationary thermal effects Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА Нормативные ссылки: ГОСТ 16962;ГОСТ 16962.1;ГОСТ 21964;ГОСТ 30630.0.0;ГОСТ 30630.2.1 ;ГОСТ Р 57700.37;ГОСТ Р 70201;ГОСТ Р 70291 | ГОСТ Р 70914-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на воздействие случайной вибрации | 01.10.2023 | действует |
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment for the effect of random vibration Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА. Подсистему виртуальных испытаний ЭА на воздействие случайной вибрации применяют на ранних этапах проектирования ЭА следующего назначения: промышленная, для энергетики, оборонно-промышленного комплекса, аэрокосмической отрасли, судостроения, медицинская, автомобильная, для навигации и радиолокации, потребительская, для фискального и торгового оборудования, связи (телекоммуникации), вычислительной техники, для автоматизации и интеллектуального управления, систем безопасности, светотехники, автоматизированного транспорта и движущейся робототехники. ЭА состоит из электронных шкафов и блоков, печатных узлов и электронной компонентной базы (ЭКБ) (микросхем, транзисторов, резисторов и т. д.). На ЭКБ и ЭА оказывает влияние воздействие случайной вибрации. Случайная вибрация может приводить к несоответствиям ЭКБ и ЭА требованиям к их стойкости (прочности и устойчивости) к воздействию случайной вибрации. Настоящий стандарт устанавливает основные положения технологии, позволяющей проводить анализ показателей стойкости ЭА к воздействию случайной вибрации с применением математического моделирования и виртуальных испытаний ЭА на воздействие случайной вибрации при проектировании. Анализ показателей стойкости ЭА к воздействию случайной вибрации необходимо осуществлять на ранних этапах проектирования ЭА посредством проведения математического моделирования и виртуализации испытаний ЭА на воздействие случайной вибрации при проектировании. Для анализа показателей стойкости ЭА к воздействию случайной вибрации методом математического моделирования (виртуализации испытаний ЭКБ и ЭА на воздействие случайной вибрации) следует применять аттестованные программные средства, а при необходимости – аттестованные программно-аппаратные средства. Требования к программно-аппаратным средствам устанавливаются по согласованию с заказчиками Нормативные ссылки: ГОСТ Р 57700.37;ГОСТ Р 70201;ГОСТ Р 70291 | ГОСТ Р 70915-2023 Системы автоматизированного проектирования электроники. Подсистема виртуальных испытаний электронной аппаратуры на нестационарные тепловые воздействия | 01.10.2023 | действует |
Название англ.: Electronics automated design systems. Subsystem of virtual testing of electronic equipment to non-stationary thermal effects Область применения: Настоящий стандарт предназначен для применения предприятиями промышленности и организациями при использовании цифровых двойников электроники и CALS-технологий на ранних этапах проектирования, изготовления и испытаний электронной аппаратуры (ЭА), а также на всех последующих этапах жизненного цикла ЭА. Подсистема виртуальных испытаний ЭА на нестационарные тепловые воздействия применяется на ранних этапах проектирования ЭА следующего назначения:промышленная, для энергетики, оборонно-промышленного комплекса, аэрокосмической отрасли, судостроения, медицинская, автомобильная, для навигации и радиолокации, потребительская, для фискального и торгового оборудования, связи (телекоммуникации), вычислительной техники, для автоматизации и интеллектуального управления, систем безопасности, светотехники, автоматизированного транспорта и движущейся робототехники. ЭА состоит из электронных шкафов и блоков, печатных узлов и электронной компонентной базы (ЭКБ) (микросхем, транзисторов, резисторов и т. д.). На ЭКБ и ЭА оказывают влияние нестационарные тепловые воздействия. Нестационарные тепловые воздействия могут приводить к несоответствиям ЭКБ и ЭА требованиям к их стойкости (прочности и устойчивости) к нестационарным тепловым воздействиям. Настоящий стандарт устанавливает основные положения технологии, позволяющей проводить анализ показателей стойкости ЭА к нестационарным тепловым воздействиям с применением математического моделирования и виртуальных испытаний ЭА на нестационарные тепловые воздействия при проектировании. Анализ показателей стойкости ЭА к нестационарным тепловым воздействиям должен осуществляться на ранних этапах проектирования ЭА посредством проведения математического моделирования и виртуализации испытаний ЭА на нестационарные тепловые воздействия при проектировании. Для анализа показателей стойкости ЭА к нестационарным тепловым воздействиям методом математического моделирования (виртуализации испытаний ЭКБ и ЭА на нестационарные тепловые воздействия) следует применять аттестованные программные средства, а при необходимости – аттестованные программно-аппаратные средства. Требования к программно-аппаратным средствам устанавливаются по согласованию с заказчиками Нормативные ссылки: ГОСТ 16962;ГОСТ 16962.1;ГОСТ 21964;ГОСТ 30630.0.0;ГОСТ 30630.2.1;ГОСТ Р 57700.37;ГОСТ Р 70201;ГОСТ Р 70291 | [1] 2 3 (25 найдено)
|
|